

IT Licentiate theses
2007-001

UPPSALA UNIVERSITY
Department of Information Technology

Querying Mediated Web Services

MANIVASAKAN SABESAN

Querying Mediated Web Services

BY
MANIVASAKAN SABESAN

February 2007

COMPUTING SCIENCE DIVISION
DEPARTMENT OF INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY
UPPSALA
SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computer Science with
specialization in Database Technology

at Uppsala University 2007

Querying Mediated Web Services

Manivasakan Sabesan

msabesan@it.uu.se

Computing Science Division
Department of Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

 Manivasakan Sabesan 2007
ISSN 1404-5117

Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

Web services provide a framework for data interchange between
applications by incorporating standards such as XMLSchema, WSDL
SOAP, HTTP etc. They define operations to be invoked over a network to
perform the actions. These operations are described publicly in a WSDL
document with the data types of their argument and result. Searching data
accessible via web services is essential in many applications. However, web
services don’t provide any general query language or view capabilities.
Current web services applications to access the data must be developed
using a regular programming language such Java, or C#.

The thesis provides an approach to simplify querying web services data
and proposes efficient processing of database queries to views of wrapped
web services. To show the effectiveness of the approach, a prototype, web
Service MEDiator system (WSMED), is developed.

WSMED provides general view and query capabilities over data
accessible through web services by automatically extracting basic meta-data
from WSDL descriptions. Based on imported meta-data, the user can then
define views that extract data from the results of calls to web service
operations. The views can be queried using SQL. A given view can access
many different web service operations in different ways depending on what
view attributes are known. The views can be specified in terms of several
declarative queries to be applied by the query processor. In addition, the user
can provide semantic enrichments of the meta-data with key constraints to
enable efficient query execution over the views by automatic query
transformations. We evaluated the effectiveness of our approach over multi-
level views of existing web services and show that the key constraint
enrichments substantially improve query performance.

Acknowledgements

First and foremost I would like to thank my supervisor Professor Tore Risch
for supervising me. I’m deeply appreciating his willingness to assist me in
writing the thesis by providing valuable suggestions and fruitful comments. I
am very grateful to him to sharing his precious knowledge with me and
being always ready to discuss the new directions and the research problems.
My second supervisor Dr.G.N.Wikramanayake is supporting me by his
constructive advices and guidance and I appreciate his assistance. I’m
grateful to Sida for providing financial assistance to continue my research
work and I also wish to thank all Sri Lankan Sida split PhD program
management committee members and Sida coordinator for Uppsala
University, Richard Wait, for their great support all the time.

Dr.S.Mahesan and Dr.S.Kanaganathan are my first Computer Science
teachers and embolden me as a research student in Computer Science. I
would like to thank them for their rewarding guidance and assistance.
Especially I’m forever grateful to Dr.Mahesan for his encouragement and
directing me towards the precise opportunities for my triumphant carrier.

I am in debt to all present and past UDBL group members for helping and
sharing with me difficulties and happiness. I am also like thank all my fellow
Sida split PhD candidates for their friendship and support.

I’m grateful to my wife, Sutha and my kids for their generous support
even I’m away from them.

Finally, I would like to dedicate this thesis to my parents, who have
always encouraged me to study.

Contents

1. Introduction ...1

2. Background..3
2.1. Database Management Systems ...3

2.1.1. Entity-Relationship Data Model ..5
2.1.2. Query processing ...7

2.2. Information Integration ..8
2.2.1. Federated databases ...8
2.2.2. Data warehouses ..9
2.2.3. Mediators ...10

2.3. XML...11
2.3.1. XML databases ..13
2.3.2. XML querying ...13

2.4. Web Services..14
2.5. Web Services Description Language..16
2.6. SOAP..21
2.7 Semantic Web ..23

3 Querying data sources with Mediators ..26
3.1. Schema representations in mediators ...26
3.2. Capability based optimization in mediators27

3.2.1. Representation of Source capabilities with binding patterns.28
3.3. Active Mediator Object System (Amos II)28

3.3.1. Amos II data model ...29
3.4. Web service mediation ...32

4. The WSMED system...33
4.1. Web Service Schema..33
4.2. System Components...37

5. WSMED Views...42
5.1 Search definitions...44

6. Impact of key constraints...46

7. Query Performance..49

8. Related work..53

9. Conclusions and future work...60

Appendix A: WSDL document structure..63

References...65

Abbreviations

AMOS Active Mediator Object System
BPEL4WS Business Process Execution

Language for Web Services
CDM Common Data Model
FTP File Transfer Protocol
HTTP Hypertext Transport Protocol
JDBC Java Database Connectivity
OASIS Organization for the Advancement of

Structured Information Standards.
OQL Object Query Language
RDBMS Relational Database Management

System
RDF Resource Description Framework
RPC Remote Procedure Call
SAAJ SOAP with Attachments API for

Java
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
UDDI Universal Description, Discovery,

and Integration
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WQL WSMED Query Language
WSDL Web Services Description Language
WSMED Web Service MEDiator
XML eXtensible Mark up Language

 1

1. Introduction

The growth of the Internet and the emergence of XML for data interchange
have increased the importance of web services [8] incorporating standards
such as SOAP[25], WSDL [11] and XML Schema [19].Web services
support an infrastructure for the applications by defining a set of operations
that can be invoked over the communication network. Web service
operations are self contained using metadata to describe data types of their
argument and result, i.e. their signatures, using WSDL. An important class
of operations is to search data accessible through web services. However,
web services don’t support any general query language or view capabilities.

As the applications query data from different web services, there is need
for a system to efficiently integrate data from heterogeneous data sources
accessible over the web services. Mediators are software to enable queries to
different kinds of data sources. In this work we investigate methods to build
such mediators for querying data provided through web services. The
development of a web service based mediator prototype is expected to
provide insights into a number of research questions:

1. To what extent can the web service standards, such as WSDL,
SOAP, and XML-Schema, be automatically utilized by a mediator
engine to query the sources efficiently and scalable?

2. How can views in a high level query language such as SQL be
defined in terms of imported web service descriptions?

3. How can the modern query optimization and rewrite techniques be
used to provide efficient and scalable access that optimally utilizes
the limited data access and update capabilities of different web
services?

4. What minimal set of extra semantic enrichment is needed in
addition to the current web service standards in order to provide
scalable access through the views?

5. How can the semantic enrichments be automatically detected and
verified?

We have developed a system called WSMED – Web Service MEDiator -
to enable high level and scalable queries over data retrieved through web
services. WSMED can access dynamically any web service by retrieving the
meta-data of a WSDL document describing service interfaces and then
invoking the web service operations. WSMED uses a generic web service
schema for representing any web service description by a WSDL document

 2

that conforms to an XML schema, such as operation signatures and other
properties. The meta-data are used to construct arguments in calls from
WSMED to web service operations and to convert the result of a call to the
format used in WSMED. Further it exploits the SOAP protocol to pack
messages to invoke web service operations. The prototype makes use of
HTTP [61] for transmission of message and is using WSDL, SOAP and
XML Schema to wrap the sources accessible through the web services. This
addresses research question one.

SQL view definitions called WSMED views are defined in terms of
imported WSDL descriptions of web service operations. Furthermore, multi-
level WSMED views can be defined in terms of other WSMED views. Web
services often return nested XML structures (i.e. records and collections),
which have to be flattened into relational views before they can be queried
with SQL. The knowledge how to extract relevant data from a given web
service is added by the user as queries called search definitions. For each
search definition, the flattening is specified as an object-oriented query using
the WSMED query language (WQL) that has support for web service data
types. The result of a web service operation invocation is translated into data
structures that are queried by the search definitions. Alternatively, XQuery
[7] can also be used for the flattening but it requires more complicated
conversion of each web service result into a temporary XML document.

By creating views and querying these views through SQL, we partially
answered research questions two and three. The analysis of the update
capabilities is subject to the future directions. Modern Query optimizations
need to be investigated deeper in the future.

An important semantic enrichment is to allow for the user to associate
with a given WSMED view different search definitions depending on what
view attributes are known in a query. This is called the binding pattern of a
search definition. The WSMED query optimizer automatically selects the
optimal search definition for a given query by analyzing its used binding
patterns.

To further improve query execution performance, the user can add key
constraints when defining WSMED views. A WSDL operation signature
description does not provide any information about which parts of the
signature is a key to the data accessed through the operation. As we show,
this information is critical for efficient query execution of multi-level
WSMED views. Therefore, we allow the user to declare to the system all
(compound) keys of a given WSMED view. To answer the research
questions four and five regarding semantic enrichments we will need to
study further.

 3

2. Background

This chapter introduces a literature study of the background knowledge
about the major enabling technologies for mediating web services. It briefly
covers data base management systems, information integration, web
services, and the core technologies involved with web services such as
XML, WSDL, SOAP, and semantic web representations.

2.1. Database Management Systems
A software system that allows creating and manipulating the huge amount of
data in a structured way is known as a Database Management System
(DBMS). A database is defined as the group of data managed by a DBMS. A
DBMS facilitates the following:

• It allows the users to create a database and specifies its data types
and structures known as a database schema through a Data
Definition Language (DDL).

• It permits the users to insert, delete, update and query data from data
bases through a Data Manipulation Language (DML)

• It provides a security system to support multilevel authentication
control for the users

• It preserves the consistency of data through an integrity system
• It provides a recovery control system to restore the database to a

previous consistent state after hardware and software failures,
called transaction and recovery control.

• It provides a user-accessible catalogue, called the schema that
contains meta-data of the data in the database.

To describe the data requirements of an organization in a readily
understandable way by the users, a higher-level description language for
schemas is required: that is known as the data model for the DBMS. DMBSs
use different kind of data models. The evolution of DBMS follows
development of new data models.

In the late 1960s the first commercial DBMSs was developed utilizing
hierarchical and network data models. These data models highly focused on
the physical data arrangement and storage of data, and they didn’t support
any high-level query languages. Navigation through a graph or tree of data
elements was the only possible way for data retrieval. Therefore the users
had to have detailed knowledge about the physical data arrangement.

 4

The relational data model was introduced by Codd [13] at the beginning
of the 1970s. It relaxes the users’ burden of how to access data and
Relational Database Management Systems (RDBMS) started to evolve. This
model is based on mathematical relations that present the data to the users in
two dimensional tables. Each cell of the table contains a data value with
different atomic types such as string, character and numbers. Even though it
resembles the traditional tabular data representations, internal storage
structures are very complex in order to provide efficient data manipulation.
Further, it supports a high level query language for efficient data base
programming. The functional relational algebra and declarative relational
calculus are the major primitives to specify a query.

There are number of query languages emerged based on these
formalisms, among them the Structured Query Language (SQL) became the
de facto language. The SQL query processing modules transfer the
declarative queries into an execution plan, which is a program to specify in
details how the data is retrieved. Further it allows creating views: they
resemble virtual relations defined through a query expression, but do not
exist physically and can be queried as they exist physically. It is sometimes
possible to modify views by an insertion, deletion, or update.

The relational model provides data independence by separating the high-
level query language from the low level implementations details. There are
two kinds of data independence: physical and logical. Physical data
independence means the capability of changing the physical structure of data
without affecting the applications, while logical data independence refers to
the immunity of the conceptual changes to the application programs.

The applications from the new areas such as computer aided engineering,
geographic information systems, and multimedia require complex data
representations exposed the limitations of the relational model and they
demanded for a new generation DBMSs: Object Oriented Database
Management Systems (OODBMS) based on object–oriented (OO) data
model. The objects are classified in classes. A class consists of a type and
methods that can be executed on objects of the class. A powerful type system
is represented with primitive atomic types, record structures, collection
types (sets, bags, arrays) and reference types (pointers). Also complex types
could be defined by repeatedly apply record-structure and collection
operators. Each object is uniquely identified by an object identity (OID).
Classes are arranged according to a class hierarchy. That is, each class can
be defined as a sub class of another and inherits all properties from some
other classes with overloading and overriding characteristics.

The OODBMSs are implemented by extending object-oriented languages
such as C++ or Java with database capabilities such as persistence,
concurrency control, and recovery. The object–oriented model enriches the
database with features to become more powerful in modeling real world
objects for the new applications. Early OODBMSs could not support any

 5

declarative querying facilities. Queries were specified through navigating the
graph structures where arcs are defined by OIDs stored as attribute values of
other objects. The ODMG (Object Data Management Group) [69] developed
a standard query language for OODBMSs that consists Object Definition
Language (ODL) and Object Query Language (OQL). The OODMS are well
suited for the applications that process complex data with less significant
query requirements such as computer-aided design packages.

By combining the declarative power of RDBMSs with the modeling
power of OODBMSs another innovative kind of DBMS, Object Relational
Database Management System (ORDBMS), was introduced and it is now
broadly used in commercial products. The object-relational model
incorporates extensions of the relational model with the following features:

• Extensible base type system by User Defined Types (UDT) that can
be introduced along with user defined functions, operators, and
aggregates operating on the values of these types;

• Complex type support via type constructors for rows (records),
collections (sets, bags, lists, and arrays), and pointer types;

• Special operations, methods, can be defined for, and applied to,
values of user-defined types;

• Unique OIDs identify each object and its data values.
• User defined query optimization rules gives cost information about

user-defined functions.
• User defined index structures provide a generic template index

structure, e.g. Generalized Search Trees [30].

The major advantages of extending the relational model is come from reuse
and sharing. To enable object-relational features these extended features are
implemented SQL:1999 [14]. Further, ORDBMS is the appropriate choice of
applications that process complex data and have complex querying
requirements.

2.1.1. Entity-Relationship Data Model
The Entity-Relationship (ER) model is a data model for abstract
representation of database schemas. During the database design process,
initially the database schema is represented in the ER model and then
converted to the data model of the DBMS, e.g. the relational model. An ER
diagram is the graphical representation of an ER schema with boxes and
arrows representing the data elements and their relationships. It represents:

• Entity: represents real-world data objects.
• Entity Type: represents a group of objects with the same properties.
• Attribute: denotes the property of an entity type.
• Relationship: is a meaningful association between entity types.

 6

In an ER diagram, rectangles represent the entity types, ovals interpret the
attributes, and diamonds denote the relationships. The lines interconnect the
respective attributes of an entity type and the other entity types involved in a
relationship.

Based on the number of entity types participating in a relationship, it can
be characterized as binary, n-ary etc. For example, when two entity types
participate in a relationship it is called a binary relationship and if n entities
participate it is an n-ary relationship. Cardinality constraint specifies the
number of entity occurrence take part in a relationship. In a binary
relationship there can be the following common cardinality constraints:

• One-to-one: Each occurrence of one entity is associated with one of
the other entity occurrence as in Figure 1.

Figure 1. one-to-one relationship

• One-to-many: Each occurrence of one entity is associated with many

of the other entity occurrences as in Figure 2:

Figure 2. one-to-many relationship

• Many-to-many: Each occurrence of first entity is associated with

multiple occurrences of the second entity and every occurrence of
second entity has association with many of the occurrence of the
first entity as in Figure 3.

Figure 3. many-to-many relationship

m n Student Course Study

m 1 Staff Department Works

1 1 Manager Branch Manages

 7

2.1.2. Query processing
Query processing involves the essential activities to retrieve required data

from a database. The query processor (Figure 4) is the group of components
of a DBMS responsible for query processing.

Figure 4. Query processing steps.

The parser ensures the query syntax follows the allowed grammar of the
query language. The parser transforms the query into an internal
intermediate form. The query optimizer translated the parsed query into an
execution plan, which is a program to retrieve data. The query execution
plan is functional program with DBMS-specific evaluation primitives such
as scan operators, selection operators, various index scan operators, several
join algorithms, sort operators, and a duplicate elimination operator. A query
typically has many feasible execution plans, and the choosing the efficient
plan is named query optimization, and is performed by the query optimizer.
The traditional query optimization based on cost-based optimization [24]. It
considers all likely execution plans and estimates the cost of each of the
plans based on the number of disk blocks read, central processing unit
(CPU) usage, and communication cost. Meta-data provides cost metrics.

Execution plan

Intermediate form of query

PARSER

Query
Optimizer

Executor

Query in a high-level language

Result of the query

 8

Based on this the cheapest execution plan is chosen. Typically heuristics are
applied to transform the execution plan to reduce the cost. The executor
interprets the execution plan to produce the query result.

2.2. Information Integration
Producing, storing and transporting information in large scale are no longer
momentous problems in the world. One significant issue in the Information
era is the information integration: find any particular piece of information
and combine this information with the existing information. Modern
database systems are evolving in the direction towards information
integration to emphasize an approach for data collection from multiple
heterogeneous data sources. This is a key application in the daily operation
of business, government, and academic organizations. The principal
approaches for data integration are [21]: federation, warehousing, and
mediation. There are subtle issues during the information integration:

1. Format differences: It covers the differences in data type, domain,
precision, and item combination. For example, a part number is
represented as an integer in one data source and represented as a
string in another.

2. Value differences: The concept could be represented in different
ways. E.g. one source could represent the value of state as ’Georgia’
while other will represent as ’GA’.

3. Semantic differences: The same term could be interpreted differently
in diverse sources. A university database keeps master degree
students under the undergraduate section while another university
database maintains it with the postgraduate portion.

4. Missing values: Some data sources may not keep some information
that other sources provide. For example, a database administrator of
a university keeps the initials of students’ names while the students
office database does not keep them.

The above inconsistency issues are solved in number of ways by different
information integration systems.

2.2.1. Federated databases
A federated database resembles a class of heterogeneous databases. A
common phenomenon is that the information sources are independent, but
one source is able to communicate with the others to retrieve information. A
wide range of solutions are proposed in the literature with different terms

 9

such as distributed databases, federated databases, multi-databases, and
interpretable systems[31].

Figure 5: Federated databases

Figure 5 illustrates four different databases in a federation where 12 pieces
of code is needed to translate the query from one another. In general, n
databases in federation need n (n-1) translations to support queries between
each other.

Each database involved in a federation maintains a local import and
export schema. The export schema describes the information of the local
database shared with the other databases in federation, while import schema
is a description of the information can be retrieved from the other databases.

2.2.2. Data warehouses
When the data from data sources of diverse locations are stored in a single
central database it is known as data warehouse (Figure 6). It requires a
global schema. Further, data from the heterogeneous data sources are pre-
processed, e.g. by filtering and aggregating, prior to storing the processed
data in the data warehouse. Users query directly the warehouse instead of
particular data sources.

For consistency, direct user updates to a data warehouse should be
avoided. Generally in a data warehouse, data is constructed in three different
ways:

• Reconstruction: Data warehouses are periodically reconstructed
from the currently available source data. During the reconstruction
the system is closed for queries. The major drawbacks are the time
consuming reconstruction process and that data for applications
that require data from the warehouse is unavailable.

XML
database

DB2

Infomix MySQL

 10

• Periodical update: The data warehouse is periodically updated based
on the changes that have been made to the sources since last
modifications to the warehouse. This kind of update reduces
amount of the time and data. But the process for calculating the
changes, incremental updates, is very complex.

• Immediate update: Each change or small set of changes occurred in
the sources are immediately reflected in the warehouse. As this
approach incurs much communication, it is best suited for a
warehouse that contains data sources changing slowly.

Figure 6 :Data ware house architecture

2.2.3. Mediators
Mediators are software modules used to query heterogeneous wrapped
data sources and applications. In [57] a mediator is defined as:

A mediator is a software module that exploits encoded knowledge about
some sets or subsets of data to create information for a higher layer of
applications.

A mediator represents a virtual view or composition of views that integrate
several heterogeneous data sources. Mediators don’t store any data
themselves and this contrasts mediation from the data warehouse approach.

Warehouse

User query Result

Extractor Extractor

Source1 Source2

 11

Instead as shown in Figure 7, it makes use of wrappers to retrieve data from
heterogeneous data sources.

Figure 7. Mediation architecture

A wrapper is a software module that facilitates query processing and
translation of data from a particular external data source. When a query is
given to the mediator, it could then construct the appropriate sub queries and
send them to the wrappers. A wrapper accepts queries from a mediator and
translates them so they can be answered by the underlying data source. Then
it returns back the result to the mediator and in turn the mediator collects
data from several wrapped data sources and post-processes them before
sending back the result of the user query. Mediators deploy a common data
model (CDM) to map schemas of heterogeneous sources. Mediation
addresses data integration in a more dynamic way than federation by using
extraction, transformation, and integration processes, while a federation
represents a static approach by utilizing agreed couplings to allow view
creation.

There are several systems such as Garlic [55], Information manifold [38],
and TSIMMIS [20] using mediators for data integration from heterogeneous
data sources.

2.3. XML
XML [9] has evolved as a de facto standard for representing structured data
and semi-structured data that have a structure changing rapidly Simplicity,

Mediator

query result

Wrapper1 Wrapper2

query query result

Source1

query result

Source2

query result

 12

open standard, platform or vendor independence, extensibility, and
reusability are some important aspects of XML.

An XML document consists of tagged data structures. An element is a
technical name for the pairing of a start tag and end tag in an XML
document. Each element contains zero or more attributes. An attribute is
specified by name-value pair.

Grammatical constraints on the structure of XML documents are imposed
by a Document Type Definition (DTD) [9]. A valid XML document must
contain a valid Document Type Declaration that conforms to the DTD. A
document's type declaration can be declared inline in an XML document, or
as an external reference. With a document type declaration, independent
groups of XML documents can agree to use a common document type
declaration for exchanging data. Further an application can use a standard
document type declaration to verify that data that is received from the
outside world is valid and can also use a document type declaration to verify
its own data. The DTD is used to verify the wellformedness and validity of
an XML document. Wellformedness ensures the XML document is syntax
error free while validity makes sure the elements and attributes in the XML
document conforms to a predefined grammar.

XML schema [19] provides a much more powerful means by which to
define the XML document structure and limitations. XML Schemas are
themselves XML documents. A schema can be associated with an XML
document by specifying the schema location via a namespace. An XML
namespace is composed of a URI and a local name. The XML schema
definition itself has its own DTD. XML schema provides a set of basic data
types [19], called Simple Types. The users can define their own simple types
by adding constraints to the basic data types. Another kind of user defined
data types known as Complex Types which allow user defined data structure
definitions containing elements and attributes. Simple types cannot have
elements or attributes. These types are much wider ranging than the basic
PCDATA and CDATA of DTDs. Further it specifies constraints on the
attributes, supports some sophisticated structures [54] such as definition
derived by extending or restricting other definitions, and a name space
mechanism allowing the combination of different schemas.

Two types of XML documents emerge from applications: data-centric
(Figure 8) and document-centric (Figure 9). Data-centric XML is
characterized by a regular structure. It occurs in the context of structured
data exchange and representation of semi structured data. Document centric
XML has a much more irregular structure, is often characterized by the
ubiquitous nature of mixed mark-up in it, and is often encountered as the
means of encoding information about documents. There are XML
documents that follow both data-centric and document-centric structures,
namely hybrid XML documents.

 13

< Notice >
 <Location>room 1345</Location>
 <MeetingTime>15:15 PM</MeetingTime>
 <Purpose>discuss future directions</Purpose>
</ Notice

Figure 8. Data-centric

<Notice>
Lab meeting will be held at the
<Location>room 1345</Location>by
<MeetingTime>15:15 PM</MeetingTime>
to<Purpose>discuss the future
directions</Purpose>
</Notice>

Figure 9. Document-centric:

2.3.1. XML databases
Various approaches [16] are followed to organize XML documents to

facilitate querying and data retrieval. With the first approach [50], an
RDBMS or ORDBMS can be used to store whole XML documents as text
fields within a DBMS. A special document processing component is
deployed to handle the XML documents and the approach is well suited for
schema-less and document-centric XML documents. The second approach
[36, 60] is utilizing an existing RDBMS to translate into a relational schema
XML documents that follow a specific XML DTD or XML schema. A
mapping algorithm manages to derive a database schema compatible with
the XML DTD or schema. The third approach [43] creates a new type of
DBMS for storing XML documents, which includes specialized querying
and indexing facilities, and compression mechanisms to reduce the size of
the documents.

2.3.2. XML querying
Several systems have been built to query XML in general, e.g. [17, 22, 23,
28, 42]. The Lore system [23] has its own XML based data model and a
query language Lorel to allow navigation of both attributes and sub-
elements. XPath [12] is a declarative query language for XML and
collections of elements can be retrieved by defining a directory-like path
along some conditions placed on the path. XPath considers an XML
document as a tree with nodes for each element, attribute, text and
namespace. Further, the XML Query Working Group [71] introduced a data

 14

model for XML containing query operators such as projection, selection,
iteration, join, sorting, aggregation, and a XML query language known as
XQuery [7]. XQuery is a functional language in which a query is represented
as expressions: path expressions and FLWR expressions. The path
expressions make use of abbreviated XPath syntax, extended with a
dereference operator and a range predicate. A set of XML documents is
accessed like a database. The FLWR (Figure 10) expression is constructed
from FOR, LET, WHERE and RETURN clauses. The FOR clause is used
whenever an iteration is needed with a specified variable while LET clause
is used to binds variables to paths before the iteration is performed. The
WHERE clause defines the conditions and the RETURN clause generates
the output of the FLWR expression.

FOR $B IN DISTINCT(document(“staff.xml”)//@branchNo)
LET $S:=document(“staff.xml”)/STAFF/[@branchNo=$B]
WHERE count($S)>20
RETURN $B

Figure 10. FLWR expression

The SQL 2003 standard [15, 64] facilitates to combine SQL with XQuery to
access both ordinary SQL-data and XML documents stored in a relational
database.

2.4. Web Services
A web service is defined by W3C [8] as:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-process able format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.

Web services provide a message exchanging framework for applications by
defining a set of operations that can be invoked over the communication
network. Each web service operation defines a specific action performed.
Web services incorporate standards such as SOAP [25], WSDL [11], XML
Schema [19], HTTP [61] and UDDI [5]. A web service is described using
the WSDL language. A WSDL description uses XML-Schema to describe
data types of the arguments and results of operations. WSDL descriptions
are published in a UDDI directory, which is a central place that holds set of
web service descriptions. Any one can find required web service
descriptions by querying the UDDI directory. A SOAP message is used to

 15

invoke a web service operation call by packing all the necessary details in a
standard format. HTTP may be deployed to transfer the SOAP message to
invoke a web service and return the result back.

The web service architecture can be illustrated with layered technologies
as shown in Figure 11. The discovery layer acts as a centralized repository
of web services and by querying this repository one could find the required
web service. The open standard technologies UDDI [5] and WS-Inspection
[3] can be deployed at this layer for how to publish, categorize, and search
for services based on the their service descriptions. The descriptions layer
deals with how to represent service behavior, capabilities, and requirements
in machine readable form.

Figure 11. Web service architecture

WSDL [11] is used to define the functional capabilities of a service in terms
of operations, service interfaces, and message types. Also it supplements
deployment information such as network addresses, transport protocols, and
encoding formats of the message transmission.

Discovery

Descriptions

Message packaging

Communications

Service quality
Other Services

Bind

Publish Find

Service
Registry

Service
Requestor

Service
Provider

 16

Figure 12: Service-oriented architecture

The communications layer carries the data over the network for the

application. Data is converted into an internal format by the message
packaging layer. SOAP provides a standard way for such message
packaging. Then the packed message will be transported by the
communications layer using internet technologies including HTTP, SMTP
[46] and FTP [47].

The service quality layer addresses protocols that ensure the quality of the
service such as security, reliable messaging, transactions, management etc.
The WS-policy framework [2] declare the service quality requirements and
capabilities that enables service quality policies of web services to be
attached to the different parts of a WSDL definition. Security policies for
authentication, data integrity, and data confidentiality are standardized by
OASIS as WS-Security policy [37]. The web service management task force
[70] is tailoring the standards for web service management that involves
with monitoring, controlling, and reporting of service qualities and usage.

Other service layers represent the protocols used for some different
purposes such as composing services to create new applications. For
example, BPEL4WS [1] provides a workflow oriented composition model
well suited for business applications.

Figure 12 illustrates the interrelationship of SOAP, WSDL and UDDI in a
service oriented environment. The service provider is responsible for
creating a service description using WSDL, and publishes service in a
service registry, UDDI. The UDDI advertises the service and allows service
requestor queries to the registry to find a service either by name, category,
identifier, or supported specification. Once the service is found, the service
requestor receives the information about the location of its WSDL
document. Then the service requestor creates a SOAP message in
accordance with service descriptions of WSDL document and sends it over
the network to the service provider to apply the service. The bind operation
embodies the relationship between the service requestor and the service
provider.

2.5. Web Services Description Language
The functional description of a web service is defined by web services
description language (WSDL) [11] that conforms to the XML grammar. A
WSDL document defines services as set of network endpoints, or ports. In
WSDL, the abstract definition of endpoints and messages is separated from
their concrete network deployment or data format bindings. This allows the
reuse of abstract definitions: messages, which are abstract descriptions of the

 17

data being exchanged, and port types which are abstract collections of
operations. An operation defines the description of an action supported by
the service. The concrete protocol such as SOAP, HTTP, and data type
specifications for a particular port type represents a reusable binding. A port
is defined by associating a network address with a binding. Different type
definitions other than XMLSchema can be used to describe all message
formats present and future, WSDL allows using other type definitions via
extensibility, known as extensibility elements. Through this structure WSDL
describes:
1. What a service does: The operations provided by the service and the data

needed to invoke them.
2. How a service is accessed: Details of the data formats and protocols

necessary to access the service’s operations.
3. Where a service is located: Details of the protocol-specific network

address, such as a URL.

A WSDL document can be described as a set of definitions. A grammar that
contains a definition element at the root denotes the structure of a WSDL
document as in Appendix A.

Figure 13. Document structure of WSDL

A simple document structure is illustrated by Figure 13. Each service has
several ports to define where it is located. In turn each port is attached with
one or more bindings that describe how a web service is accessed. Each
binding is attached with a portType having a set of operations to answer
what a service is does. Request and response messages are attached with
each operation to indicate the input and output of an operation.

Definitions
A definition contains the elements name, documentation, import, types,
message, portType, binding, and service. The element definitions contains

<service>

 <port>

 <port>

 <port>

<portType>

 <operation>

 <operation>

 <operation>

<binding>

[SOAP]

<message>

[Request]

<types>

[data]

<message>

[Response]

<binding>

 […..]

Supported
Protocol(s)

Service(s)

 18

the attribute name (usually the name of the web service) for only
documentation purpose. The attribute targetNamespace stores the
namespace URI for the entire WSDL file. That attribute is used to form
QNames (Qualified names) of portTypes, bindings, and so on, and how to
combine WSDL descriptions that span multiple files. The usual XML
namespace (xmlns) declarations are also part of definitions. The import
element permits the separation of the different elements of a service
definition into independent documents by associating a namespace with a
document location.

Types
Types denote the data types for the exchanged messages and adopt the types
supported XML-Schema.

Messages
A message consists one or more parts. Each part is associated with a type
and element attribute. The name provides a unique name among all other
parts and messages. Generally a message definition is considered as an
abstract definition. A message binding describes the mapping between the
abstract and concrete definitions.

Parts
A part supports a mechanism for depicting the abstract content of a message.
A binding is specified with reference to the name of a part for binding-
specific information. Multiple part elements are defined with messages to
specify multiple logical units.

Port types
A port type defines a set of abstract operations and the abstract messages.
The name attribute provides a unique name. A port type is defined as:

<wsdl:definitions >
<wsdl:portType name="nt">

<wsdl:operation name="nt" /> * 1
</wsdl:portType>

</wsdl:definitions>

Operations
An operation defines a method on a web service, including the name of the
method and input parameters and the output parameters of the method. All
the operation names within a single port type are different.
1. One-way: The endpoint only receives the message.

<wsdl:definitions >

1 * - zero or more

 19

 <wsdl:portType > *
 <wsdl:operation name="nt">
 <wsdl:input name="nt"? message="qname"/>
 </wsdl:operation>
 </wsdl:portType >
</wsdl:definitions>

2. Request-response: The endpoint receives a message and sends a
response.

<wsdl:definitions >
<wsdl:portType > *
<wsdl:operation name="nt" parameterOrder="nts 2">
<wsdl:input name="nt"? message="qname"/>
<wsdl:output name="nt"? message="qname"/>
<wsdl:fault name="nt" message="qname"/>*

</wsdl:operation>
</wsdl:portType >

</wsdl:definitions>
3. Solicit-response: The endpoint sends a message, and receives a response.

<wsdl:definitions >
<wsdl:portType > *
<wsdl:operation name="nt"

parameterOrder="nts">
<wsdl:output name="nt"? message="qname"/>
<wsdl:input name="nt"? message="qname"/>
<wsdl:fault name="nt" message="qname"/>*

</wsdl:operation>
</wsdl:portType >

</wsdl:definitions>

4. Notification: The endpoint only receives a message.
<wsdl:definitions >
<wsdl:portType > *

<wsdl:operation name="nt">
<wsdl:output name="nt"? message="qname"/>

</wsdl:operation>
</wsdl:portType >

</wsdl:definitions>

Bindings
Message formats and protocol information for each operation and message
defined under a port type is defined by a binding. A given port type may
have any number of bindings. The attribute name provides a unique name
for a binding. A binding have to specify exactly one protocol and must not

2 nts- nmtokens [9]

 20

specify any address information. The referenced port type is depicted by
attribute type. A concrete grammar for input, output and fault messages is
specified by the binding elements. The following exemplifies a binding
conforming to the above:

<wsdl:binding name="TerraServiceSoap"
type="tns:TerraServiceSoap">

<soap:binding
transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<wsdl:operation name="ConvertLonLatPtToNearestPlace ">

<soap:operation soapAction="http://terraservice-
usa.com/ConvertLonLatPtToNearestPlace"
style="document" />

<wsdl:input>
<soap:body use="literal" />

</wsdl:input>
<wsdl:output>

<soap:body use="literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

Further a binding element for a given port type can denote a transport
protocol such as SOAP over HTTP, SOAP over SMTP, HTTP POST
operation, etc.

Binding extensions
WSDL supports three extensibility conventions that allow the binding to be
extended with elements from different XML namespaces to describe
bindings to any number of transport protocols such as SOAP, HTTP.
SOAP Binding extension
Extension elements are used to bind a WSDL description to the SOAP
protocol. The Soap:binding is an obligatory element when using the SOAP
binding. The style attributes shows subsequent operations following one the
two alternatives: document or rpc (Remote Procedure Call). The option rpc
declares that the messages have parameters and return values while the
option document indicates that the messages contain documents. Further, the
document option specifies how the body of the SOAP message will be
interpreted in straight XML, while the rpc option indicates that the binding
uses RPC conventions for SOAP body specifications. The style for the
binding can be overridden by the style attributes in the child operation
elements. The soapAction defines the name of the action (method) to be
invoked by the service. It is placed in the SOAPAction HTTP header as the
part of an HTTP message. The soap:body declares the structure of the
contents of the message. The attribute parts specifies which parts will be

 21

used during the SOAP message creation process. The soap:fault element
shows the contents of the SOAP faults details.

Ports
For each binding the attribute port defines a single address endpoint. An
extensibility element specifies the address information of a port and more
than one address can’t be specified for a port.

Services
A service groups is a set of related ports. An example that defines service
element is:

<wsdl:service name="TerraService">
<documentation
xmlns="http://schemas.xmlsoap.org/wsdl/">TerraServe r
Web Service</documentation>

<wsdl:port name="TerraServiceSoap"
binding="tns:TerraServiceSoap">

<soap:address location="http://terraservice.net
/TerraService2.asmx" />

</wsdl:port>
</wsdl:service>

The name attribute specifies a unique service name.

The structure of WSDL described above is based on WSDL 1.1 of W3C
recommendation. Most of the existing WSDL documents are based this
version. W3C now concentrates on WSDL 2.0, and it is defined with three
specifications:

• Part I, the core Language
• Part II, Message Patterns
• Part III, Bindings

Some new features are added, some removed and some of them are modified
for unambiguity, better naming, and simplifications.

2.6. SOAP
SOAP is an XML based lightweight, platform independent protocol for
information exchange in a distributed environment. SOAP is not only used
with HTTP but also potentially used in combination with other protocols
such as SMTP, TCP [63]. The simplicity and extensibility are the major
design goals of SOAP.

Structure of a SOAP message

A SOAP message (Figure 14) is made up of three elements:

 22

• A SOAP Envelope is a top element that encapsulates the other two
elements representing the message.

• An optional SOAP header provides a generic mechanism for adding
additional features to the message such as routing and delivery
setting, authentication assertions, and transaction contexts.

• A SOAP body contains the actual message to be delivered and
processed.

Figure 14. SOAP Message

In addition to the above components a fault block could appear with in the
body whenever there is an error to be reported to the sender of the SOAP
message. The SOAP block denotes a single computational unit of data by the
processor of a message.

Example of a SOAP message:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/en velope/"

 SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body xmlns="http://terraservice-usa.com/ ">

 <GetPlaceList>

 <placeName>Atlanta</placeName>

Header

SOAP block

SOAP block

Body

SOAP block

SOAP block

Envelope

 23

 <MaxItems>100</MaxItems>

 <imagePresence>true</imagePresence>

 </GetPlaceList>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The current SOAP specification is version 1.2 [25] released by W3C in June
2003. SOAP message transmission is basically one-way from a sender to a
receiver. To exploit the unique characteristics of the network protocols used
for a transmission, SOAP implementations can be optimized. Generally
messages are routed along a message path which contains one or more
intermediate nodes in addition to the eventual destination. Further, the actor
attribute is used to indicate the intended participants of various parts of a
SOAP message and used to direct a SOAP message through a sequence of
intermediaries, with each one processing its portion of the message and
forwarding the remainder.

In addition to pure messaging semantics, SOAP defines a mechanism for
RPC by placing some constraints such as how the root element of SOAP
body is to be named and how the data could be encoded.

2.7 Semantic Web
The semantic web [62] is an emerging framework that aims at machine-
processible information for information sharing. It defines standards not only
for syntactic form of documents, but also for the semantic contents. Further,
it enables intelligent services such as information brokers, search agents and
information filters to offer more functionality and interoperability than
current technologies. The prominent W3C standardization efforts are
XML/XML schema and RDF [35]/RDFSchema [10] to facilitate semantic
interoperability.An ontology defines a hierarchy of concepts within a domain
and describes each concept’s crucial properties through an attribute-value
means Ontologies play a vital role in the semantic web for processing,
sharing and reusing metadata between applications. The OWL [26] layers
OWL Lite, OWL DL and OWL Full along with RDF are the commonly used
as ontology languages in the semantic web.

RDF facilitates a common framework for expressing information about a
web source that needs to be processed by applications so the information can
be exchanged between applications without loss of meaning. What sets RDF
apart from XML is that RDF is designed to represent knowledge in a
distributed world while XML-Schema is purely syntactic/structural to
encode an application-specific data interface. RDF provides a method to
decompose any knowledge into small segments, called triples also known as

 24

statements, with some rules about the semantics (meaning) of the statements.
Each triple contains subject, object and predicate. The subject represents the
entity described by the piece of knowledge. The predicate is an identifier for
some property of the subject. The object denotes the value of the property.
Consider the following knowledge represented by a sentence
“http://www.it.uu.se/edu/course/kurs start/spring.html web page maintained
by Department of information technology”. An equivalent RDF
representation can be stated with the subject, http://www.it.uu.se/edu/course
kursstart/spring.html and the predicate, maintained with the object
Department of information technology. Further, RDF permits the object to
be lists, bags, and sequences.

RDF can be used in resource discovery for enhancing search engine
capabilities, and cataloguing for content description of web sources and
interrelationship of contents. W3C [35] standardize the concepts and syntax
of RDF to achieve:

• Simple data model: easy to handle by the applications.
• Formal semantics and inference:
• An extensible URI-based vocabulary
• An XML-based syntax and support of XML schema data types

The knowledge is represented by the RDF statements as a labeled, directed
graph, the RDF Graph (Figure 15). An RDF graph represents a set of RDF
triples. The subject is what's at the start node of the edge, the predicate is the
type of edge (its label), and the object is what's at the end node of the edge.

Figure 15. An RDF graph

In practice, name of predicate and object prefixed with a URI for the

global identification. Blank nodes represent objects where the name of the
object is unknown. RDF specifies how the triples are used to represent

http://www.it.uu.se/edu/ course/kursstart/spring.html

http:/ /www.it.uu.se/edu/ Department
of Information Technology

http://www.it.uu.se/edu/maintained

 25

knowledge, i.e. and abstract model. The triples are normally encoded in
XML. Most of the abstract model of RDF comes down to these simple rules:

• A fact is expressed as a Subject-Predicate-Object triple.
• Subjects, predicates, and objects identify entities, whether concrete

or abstract, in the real world.
• Names are URIs, which are global in scope, always referring to the

same entity in any RDF document in which they appear.
• Objects can also be given as text values, called literal values, which

may or may not be typed using XML Schema data types.

The W3C specifications define an XML format to encode RDF triples,
RDF/XML [4].

RDF Schema [10] defines the vocabulary used in RDF models such as
specifying which attributes apply to which kinds of objects and what values
they can take, and describing the interrelationships between objects. Users
that specify RDF documents are free to define their own terminology in RDF
Schema. An elementary block in RDF schema is a class to group resources
where each member shares some same properties. The other important
elementary statement is the inheritance relation between classes:
subClassOf. While XML Schema constraints the structure of XML
documents based on syntax, an RDF Schema defines the vocabulary for the
semantics used in RDF documents.

RDQL [51] and SPARQL [45] are two standard query languages for
semantic web data. An RDQL query consists of a graph pattern, expressed as
a list of triples and each triple pattern is comprised of named variables and
RDF values (URIs and literals). An RDQL query (Figure 16) can support a
set of constraints on the values of those variables and set of variables those
produce answer set.

select ?a
where (?a, <http://www.type.com/syntax-ns#type>,<ht tp://fin
d.com/someType>)

Figure 16. RDQL query

SPARQL has all the features of RDQL and more:
• ability to add optional information to query results
• disjunction of graph patterns
• more expression testing E.g. date-time support
• named graphs
• sorting

 26

3 Querying data sources with Mediators

Performance and scalability over the amounts of data retrieved are important
design aspects of mediators. Further, a mediator module is able to handle
semantic integration of underlying sources. The system interpreting these
mediator modules are known as the mediator engine. This chapter addresses
schema representations in mediators, and query processing techniques used
to handle limited capability sources. The WSMED using for web service
mediation is developed by extending the AMOS II mediator engine [48, 49].
Further this chapter overviews the AMOS II mediator system including its
data model and other functionalities.

3.1. Schema representations in mediators
Many systems [20, 38, 55] have been developed using the central mediator
approach where the mediator is a central component with many wrappers.
Other kinds of mediators are called composable mediators where mediators
may wrap other mediators [34]. A mediator can have a global schema that
includes all data schemas from the external sources. The global schema
definition is difficult, in particular when there are many heterogeneous
sources.

Mediators are providing a common data model CDM to represent the data
integrated from different sources. The mediator engine interprets queries in
terms of the CDM. Views play the prominent role in the meditation and
defined by means of the CDM. Since the diverse sources represent the same
information differently from the mediator schema, a mediator must include
view definitions describing how to map the source schema into the
mediator's schema. The most common methods in practice are:

• Global as view [20, 27]: With this strategy, the mediator schema is
defined in terms of a number of views that map wrapped sources.
This global mediator view is defined by matching and transforming
data from the source schemas. Whenever new sources are inserted
the view definitions need to be extended accordingly.

• Local as view [38]: It contains a fixed mediator schema. Whenever a
new source is inserted, the view definitions have to define how to
map data from the mediator schema to the new source’s schema
without any further alternation in the mediator schema. This

 27

approach simplifies the insertion of new sources. However, there
are some issues of how to resolve differences when there are
conflicts and overlaps between sources. Usually a default
reconciliation based on accessing best source that covers the best
data is needed for a user query. That is, the local as view approach
is ill suited for reconciliation of the differences and similarities
between different sources’ data.

3.2. Capability based optimization in mediators
Data retrieval through web sources is a common practice in the industry.
Mediators can be defined to integrate such data sources. They allow certain
attributes as inputs and produce outputs with certain attributes, but have to
real query capabilities. We say that these sources have limited capabilities.
In addition, there are some other reasons for limited source capability:

• Legacy sources: Data is kept in some outdated format and it is
impossible to convert the data format into a modern DBMS.
Legacy sources only allow certain queries with specified inputs.

• Security: To ensure the privacy of data, such as defense information,
sources permit only limited queries.

• Limitation by indexes: Indexing the data is a common mechanism to
speedup the queries and is widely adopted in DBMSs. User queries
to the attributes that are not indexed are not supported by the data
sources as those queries examine millions of tuples.

The traditional cost based optimization is inadequate for web sources as
queries to sources with limited capabilities are not only based on cost
metrics but also depends on what query capabilities the sources provide. The
optimization strategy capability-based optimization [44, 58] is tailored to
consider the feasible plans on the basis whether the plans can execute at all
using the limited capabilities of a data source. Cost measures can be used to
choose among the feasible plans. Source capabilities are represented and
examined during the query optimization mainly in two ways:

• Rule-based checking: This approach is implemented in mediator
systems such as Garlic [20], Information Manifold [38], and
TSIMMIS [39] to match the source capabilities. Source capabilities
are represented as capability records [38] or by some special
description languages such as Relational Query Description
Language (RQDL) [56]. Complex rules are applied to find the
suitable sources. During the query optimization phase rewrite rules
are applied for efficient query execution.

• Binding patterns: Source capabilities are represented by a set of
adornments [21] known as binding patterns. Matching sources are
selected by analyzing the binding patterns. Information systems

 28

such as the web query optimization system [59] utilize binding
patterns to represent the source capabilities.

Estimating cost metrics in the mediation environment is quite difficult as the
data sources are independent from the mediator. For example, with data
accessible via web services the data retrieval time can be very slow due to
congestion on the communication network or that the server providing
service is highly loaded by several requests for data. Long-term observation
or continuous monitoring of services will help for accurate cost estimation
[29].

3.2.1. Representation of Source capabilities with binding
patterns
The capability specifications of a data source are described as a set of
adornments [21]. One adornment is attached with each attribute of the data
source. It is represented by an alphabet with specific meaning:

• f (free) - the value of the attribute need not to be specified
• b(bound) - the value of the attribute must be specified
• c[L](choice from a list L)- the value of the attribute must be

specified from the values in the list L.
• o[L](optional, from the list L)- the value of the attribute is optional,

and if a value is specified it could be chosen from the list L.

f, b, and c[L] are the common adornments used to address the capabilities of
sources that can be accessible via web services. o[L] is common when
accessing web forms.

3.3. Active Mediator Object System (Amos II)
We have developed the prototype WSMED based on the existing mediator
engine Amos II [49]. Amos II is an extensible main-memory oriented system
that mediates distributed data sources. An object-oriented query language,
AmosQL, is the primary query language. The system can support several
wrappers to make heterogeneous data sources query able. A wrapper
perform [48] the following:

• Schema importation: Translate the sources’ schema into a form
compatible with Amos II CDM.

• Query translation: translate AmosQL queries into API calls, web
service calls or query expressions executable by the sources.

• Statistics computation: estimate costs and selectivities for the calls
to retrieve data from sources.

 29

• Proxy OID generation: constructs proxy object identifiers to
describe the data from sources.

3.3.1. Amos II data model
The primitive concepts objects, types, and functions represent the Amos II
data model (Figure 17). It is used as the CDM for the mediation and it is an
extension of the Daplex [49, 52] functional data model.

Objects: They model all the entities in the database. Amos II has system
objects and user-defined objects. Objects are represented in two ways, as
literal or surrogates. Surrogates represent the real world entities such as
vehicles, persons, etc; and have associated OIDs. They can be explicitly
created and deleted by the users and the OIDs are maintained by the system.
Literal objects are self-described system-maintained objects and do not have
any explicit OIDs. For example numbers and strings. There are also
collections of other objects: bags, vectors, and records. A bag represents
unordered sets with duplicates while vectors denote the order-preserved
collections. Vectors are accessed by v[i] where v is a variable holding a
vector, and i is the index of an element in a vector. Records are useful to
manage data retrieved through web services as they often handle nested
structures. Records access uses the notation s[k], where s is a variable
holding a record, and k is the name of an attribute in a record. Thus records
are indexed by arbitrary keys while vectors are indexed by numbers only.

Figure 17. Amos II data model

Literals are automatically deleted by a garbage collector when they are no
longer referenced.

Types: Objects are classified into types and each object is an instance of
one or more types. The extent of a type represents the set of all instances of

Object

Type Function Literal

Number

real integer

Charstring Collection

bag vector

userobject

record

datasource

Amos Relational

ODBC_DS JDBC_DS

 30

the type. Types are ordered into a multiple inheritances type hierarchy. A
type is defined and stored in the internal database of the system with system
function create type. E.g.

create type Vehicle;

create type Truck under Vehicle;

Functions represent properties of objects, computations over objects,
relationships between objects, and are used as primitives in queries and
views. A function contains two parts: a signature and an implementation.
The signature defines the types and names of the arguments and the result of
a function. For example, the signature modeling the attribute color of the
type Vehicle would have the signature:

colour(Vehicle) → Charstring

The implementation defines the mapping of a function to compute results
for given arguments. Further, Amos II can inversely compute one or several
arguments values of a function if the expected result value is known; this is
known as the multi-directional feature of a function. The inverse usage of
functions is crucial to specify general queries with function calls over the
database. For example:

select vehichlenumber(v)
from Vehicle v
where colour(v)=’blue’;

Functions can be classified according to their implementations as:
• Stored functions are used to represent the properties of objects stored

in an Amos II database.
• Derived functions are defined in terms of other Amos II functions as

queries. They are side-effect free and they are precompiled and
optimized as soon as they defined. The queries are expressed in
AmosQL, using has an SQL-like select statement for defining
derived functions.

• Foreign functions support low-level interfaces for wrapping external
systems. They can update the external sources. However, foreign
functions to be used in queries must be side-effect free. Further, it
is possible to associate several implementations of inverses for a
given foreign function, multi-directional foreign functions, which
informs the query optimizer that there are several access paths
implemented for the function. Users can help the query processor
by associating cost and selectivity estimates for each access path
implementation. Multi-directional foreign functions are defined
using binding patterns. For example:

 31

create function food(Charstring keyword,
 Charstring groupcode)

 →(Charstring ndb, Charstring descr)

as multidirectional

("ffff" foreign “JAVA: webservicewrapper/foodDescr”
cost{100,1})

("fbff" foreign “JAVA: webservicewrapper/gp_foodDes cr”
cost{200,4})

("bfff" foreign “JAVA: webservicewrapper/kw_foodDes cr”
cost{150,3})

("bbff" foreign “JAVA: webservicewrapper/gp_kw_food Descr”
cost{400,6})

Here, the Java methods foodDescr, gp_foodDescr, kw_foodDescr
and gp_kw_foodDescr are defined to retrieve some food data with
different binding patterns. The foodDescr method will deliver data
when none of the arguments of function food are known. The
function gp_foodDescr retrieves data when the value for
groupcode is known. Similarly kw_foodDescr returns values when
keyword is known. In the case of both values for keyword and
groupcode are specified, the gp_kw_foodDescr method will be
used. The cost specifications estimate both execution costs in
internal cost units and result sizes (fanouts) [40] for a given
method invocation. In a web service mediation scenario,
commonly many web service operations from diverse web services
are involved. This common practice defines database views with
multiple capabilities enabled with different binding patterns. Multi-
directional foreign functions implement these kinds of views with
various capabilities.

Data source: Diverse data sources are represented explicitly through the
system type Datasource and its sub-types. Some of the sub-types embody
generic kinds of data sources that share common properties. For example,
the type Relational represents the common properties of all RDBMs. Other
subtypes represent specific kinds of sources such as type JDBC_DS
represents the JDBC drivers. Instances of these types represent individual
data sources. Each data source type instance has a unique name and set of
imported types.

 32

3.4. Web service mediation

Our mediator engine for web services, WSMED (Figure 18), provides web
service meditation by extending the Amos II mediator system. One common
web service wrapper is deployed to wrap any web service. SQL user queries
can be issued to WSMED. When an SQL query is received the required web
service calls are passed to the web service wrapper to be invoked. The result
of the web service call is normally a nested XML structure. It is post
processed by the mediator to answer the user query. More detailed web
service mediation with multi-level views is addressed in the chapter 5.

Figure 18. Mediation of web services

WSMED

SQL query result

Wrapper Wrapper

query query result

Web
service
call

result result

Web
service1

Web
service2

Web
service
call

 33

4. The WSMED system

This chapter gives an overview of the WSMED system. The web service
schema subsection describes WSMED’s internal representations of web
service descriptions defined by WSDL documents and user provided
semantic enrichments. The system components sub-section describes
functionalities of WSMED system modules.

4.1. Web Service Schema
A WSDL description of a web service describes interfaces of its operations
and the XML Schema data types are used. Figure 19 shows an ER-diagram
of WSMED's web service schema that represents WSDL descriptions. The
web service descriptions store the WSDL core elements service, operation,
and element.

A service describes a particular web service and supports a set of
operations, the Service entity. Each web service has a name, and a
namespace URI nu is a URI to identify the web service. The ports
relationship represents the association between a service and its operations.
Each operation named na represents a procedure that can be invoked
through the web service. The style, st, indicates whether the operation is
RPC-oriented or document-oriented. The encoding style, es, is a URI that
indicates the encoding rules for data in the SOAP messages. The target URL,
tu, determines the address of the SOAP message. The SOAPactionURI, su,
identify the task of the SOAP Message.

Each operation has a number of input and output elements. An element is
an abstract definition of the data being transmitted and is associated with a
type definition using XML Schema. The input and output elements define
the signature of the operation. Complex data elements may consist of other
sub-elements where each sub-element has a data type, along with a name and
the number of maximum occurrences within the super element. The
WSMED uses a conversion table (Table 1) for type conversion from/to a
XML Schema data type to/from the corresponding data type in WSMED.

The right part of Figure 19 describes some semantic enrichments
provided through WSMED in order to improve query execution efficiency.
A WSMED view definition may reference several web service operations, as
indicated by the view_of relationship. It is defined in terms of a number of

 34

attributes. Each attribute has a name, a data type, and a flag (is_key) to
indicate whether it is the primary key of the WSMED view. To simplify the
schema, we here ignore representation of secondary keys.

Figure 19. Web Service Schema

Operation

Service ports
M

N
es

tu

su st

input output

Element max
occurs

type

na

M

N 1

sub
elements

1

WSMED view view-
of

N

name

searchdefinition

searchdefinitions

na

co

bp
dq

M

M

Attribute

attributes

type

M

1

fo

name

is_key

nu

WSMED enrichments

N

na

N

M

1

Web service descriptions

Relationship (function in
WSMED)

Direction of function Cardinality constraints 1 N

bp – binding pattern co – cost dq – declarative query es – encodingstyle
fo – fanout na – name nu – namespace URI sd – search definition
st – style su – SOAPactionURI tu – targetURL

Entity (type in WSMED)

Attribute (function in WSMED)

na

 35

A WSMED view is defined in terms of a set of different search strategies,
called search definitions. A search definition has an associated binding
pattern, bp, indicating the attribute bindings when the search definition is
applicable.

The declarative query, dq, of a search definition specifies for a particular
binding pattern a query that computes the view in terms of the structure
returned from web service operations. For query optimization each search
definition also has some optional statistics, like the estimated cost, co, to
execute the search definition and its estimated result size, fo (fanout). The
user can explicitly specify co and fo by profiling the search definition3. In the
search definition (Figure 20), fbfb is the binding pattern, select
foodDescr(fgc,fd) is the declarative query of the search definition, and the
numbers associated with the keyword cost represents co and fo, respectively.
Chapter 5 explains more details of the view foodDescr..

("fbfb" select foodDescr(fgc,fd) cost {1000,100});

Figure 20. Search definition

In case the user cannot specify the costs, a default cost model is used to
approximate the execution cost of web services. The default cost model is
defined in Chapter 7.

Figure 21 shows how the web service schema is represented in WSMED
using the object-oriented query language AmosQL [48, 49]. An entity is
represented as a type, a relationship as a function, and an attribute as a
property of a type.

create type Service
properties (name Charstring,
 namespaceuri Charstring,
 wsdluri Charstring);

create type Operation
properties(name Charstring,
 soapactionuri Charstring,
 style Charstring,
 encodingstyle Charstring,
 targeturl Charstring);

create function port(Service) -> Bag of Operation;

create type Element
properties(name Charstring,
 mappedtype Charstring,
 maxoccurs Integer);

3 Automatic computation of co and fo is future work.

 36

create function input(Operation)
 -> vector of Element;

create function output(Operation)
 -> Vector of Element;

create function subelements(Element)
 ->Vector of Element;

create type WSMEDView
properties (name Charstring);

create function view_of(WSMEDView)
 ->Bag of Operation;
create type Attribute
properties (name Charstring,
 type Charstring,
 is_key Boolean);

create function attributes(WSMEDView)
 ->Bag of Attribute;

create type Seachdefinition
properties (name Charstring,
 co Integer,
 fanout Integer,
 dq Charstring,
 bindingpattern Charstring);

create function searchdefinitions(WSMEDView)
 ->Bag of Searchdefinition;

Figure 21. WSMED representation of the web service schema

WSDL data
type WSMED data type WSDL data type WSMED data

type

anyURI Charstring Integer Real

baseBinary Charstring Language Charstring

Boolean Boolean Long Integer

Byte Integer Name Charstring

Date Date NCName Charstring

dateTime Charstring Negative Integer Real

 37

Decimal Real NMTOKEN charstring

Double Real NMTOKENS charstring

Duration Charstring Nonnegative Integer Real

ENTITIES Charstring nonPositive Integer real

ENTITY Charstring Normalized String charstring

Float Real NOTATION charstring

gDay Charstring positiveInteger real

gMonth Charstring QName charstring

gMonthDay Charstring Short integer

gYear Charstring String charstring

gYearMonth Charstring Time Time

hexBinary Charstring Token charstring

ID XS_ID unsignedByte integer

IDREF XML unsignedInt integer

IDREFS XML unsignedLong integer

Int Integer unsignedShort Integer

Table 1. Mappings between WSDL and WSMED data types

An important semantic enrichment is information about the key of the data
returned by a WSMED view, the attribute is_key. This enrichment is
important to detect common sub-expressions in queries, as will be shown in
the forthcoming chapters.

4.2. System Components
Figure 22 illustrates WSMED’s system components. WSMED represents
WSDL meta-data in the web service meta-database using the web service
schema (Figure 19, left part).

 38

Figure 22. WSMED system components

The WSDL Importer can populate the web service descriptions by, given the
URL of a WSDL document, reading the WSDL document using the Java
tool kits WSDL4J [66] and Castor [68]. It parses the retrieved WSDL
document, converts it to the format used by the web service schema, and
stores the extracted meta-data in the web service meta-database. In addition
to the web service descriptions, WSMED also keeps additional WSMED
enrichments (Figure 19, right part) in its local store.

The query processor exploits the web service descriptions and WSMED
enrichments to process queries. It utilizes an existing mediator engine Amos
II [48,49]. The query processor calls the web service manager component,
which is implemented using the APIs SAAJ [65]. The web service manager
is accountable for invoking web service calls using SOAP in order to
retrieve the result for the user query.

WSDL
Importer

Web Service
Manager

SQL
query

WSDL
document

Query
Processor

WSMED
enrichments

Web service
schema

Web service
meta-database

Results

Web
service

 39

Figure 23. Query Processor

Figure 23 illustrates architectural details of the query processor. The
calculus generator produces a domain calculus expression from an SQL
query. This expression is passed to the query rewriter for further processing
to produce an equivalent but simpler domain calculus expression. The query
rewriter calls the view processor to translate SQL query fragments over the
WSMED view into relevant search definitions that call web service
operations. An important task for the query rewriter is to identify overlaps
between different sub-queries and views calling the same web service
operation. This requires knowledge about the key constraints. We show in
Chapter 6 that such rewrites significantly improve the performance of
queries to multi-level views of web services.

The rewritten query is translated into an algebra expression by a cost-
based optimizer that uses a generic web service cost model as default. The
algebra has operators to invoke web services and to apply external functions
implemented in WSDL (e.g. for extraction of data from web service results).
The algebra expression is finally interpreted by the execution engine. It uses
the web service meta-database to convert between the WSMED data
representation and a SOAP message when a web service operation is called.

A call to the web service manager is specified by web service properties
such as SOAPactionURI, style, encodingstyle, namespaceURI, and
targetURL (Figure 19). Furthermore, it contains the actual parameters of the
operation, called the input elements. As shown by Figure 24, the web service
manager uses two sub components to create a SOAP message: The Result
extractor and the SOAP Processor. The result extractor and the SOAP
processor are using SAAJ APIs.

web service
arguments

SQL query

query
rewriter

cost-based
optimizer

execution
engine

calculus
generator

view processor

 40

Figure 24. Web Service Manager

The SOAP processor creates a request SOAP message with a SOAP body
(Figure 25). The SOAP processor requires additional information given web
service properties to complete the SOAP message creation.

<SearchFoodByDescription>
 <FoodKeywords>Sweet</FoodKeywords>
 <FoodGroupCode>1900</FoodGroupCode>
</SearchFoodByDescription>

Figure 25. The content of request SOAP body

Finally the SOAP message is sent over the network to invoke the web
service operation call. The response from the remote web service call is also
received as a SOAP message. The contents of the SOAP message is
extracted by the SOAP processor and sent it to the result extractor.

The result extractor extracts data from the SOAP message content(Figure
26). It requires the properties of the output elements (Figure 19) from the
web service operation call, such as type and maxoccurs, to constructs the
result data of the web service call. The result extractor retrieves the values
for type and maxoccurs from the web service meta-database. The type of the
operation's output elements is used by the result extractor for converting the
XML data format into the data format used by WSMED. The attribute
maxoccurs is used to construct the result object structure. Finally the result is
sent back to the execution engine.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap
.org/soap/envelope/" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance" xmlns:xsd="http://www.w
3.org/2001/XML Schema">

g,h

a,b,c,d,e,f result
s

SOAP message

a - input elements b - SOAPactionURI
c - style d -encodingstyle
e - namespaceURI f - targetURL
g - type h-maxoccurs

 message
content

SOAP
Processor

Result
extractor

 41

 <soap:Body>
 <SearchFoodByDescriptionResponse xmlns="http:
//www.strikeiron.com/">
 <SearchFoodByDescriptionResult>
 <SearchByKeywordsOutput>

 <NDBNumber>02044</NDBNumber>

 <LongDescription>Basil, fresh

 </LongDescription>

 <FoodGroupCode>0200</FoodGroupCode>

 </SearchByKeywordsOutput>

 </SearchFoodByDescriptionResult>

 <ResponseStatus>

 <response_code>0</response_code>

 <response_string>Success
</response_string>

 </ResponseStatus>

 </SearchFoodByDescriptionResponse>

</soap:Body>

</soap:Envelope>

Figure 26. The response SOAP message

The execution engine performs further post processing specified by the
execution plan such as filtering and data transformation before the query
result is delivered to the user.

 42

5. WSMED Views

To illustrate and evaluate WSMED views we use a publicly available web
service to access and search to the National Nutrient Database for US
Department of Agriculture [67]. The database contains information about the
nutrient content of over 6000 food items. It contains five different
operations: SearchFoodByDescriptions, CalculateNutrientValues,
GetAllFoodGroupCodes, GetWeightMethods and GetRemainingHits. We
illustrate WSMED by the operation SeachFoodByDescriptions to search
foods given a FoodKeywords or a FoodGroupCode. The operation returns
NdbNumber, LongDescription and FoodGroupCode as the results. The
WSMED view food in Table 2 allows SQL queries over this web service
operation.

food:

ndb keyword descry gpcode

19080 Sweet Candies 1900

……… ……… …………… ……….

Table 2. WSMED view food

For example, the following SQL query to the view food retrieves the
description of foods that have food group code equal to 1900 and keyword
‘Sweet’:

select descry
from food
where gpcode = ’1900’
 and keyword = ’Sweet’;

The WSMED view food is defined as follows:

create SQLview food (Charstring ndb ,Charstring key word,
Charstring descry, Charstring gpcode)

as multidirectional

 (“ffff” select ndb, “”,descry, gpcode

 where foodDescr(“”,“”)= <ndb,descry,gpcod e>)

 43

 (“fffb” select ndb, “”,descry

 where foodDescr(“”,gpcode)= <ndb,descry,g pcode>)

 (“fbff” select ndb,descry,gpcode

 where foodDescr(keyword, “”)= <ndb,descry ,gpcode>)

 (“fbfb” select ndb, descry

 where foodDescr(keyword,gpcode)= <ndb,descry,
gpcode>)

Figure 27. WSMED view definition

A given WSMED view can access many different web service operations in
different ways. When the user defines a WSMED view he can specify the
view by several different search definitions as declarative queries. They each
implement a different way of retrieving data through web service operations.
Different search definitions can be defined based on what view attributes are
known or unknown in a query, the view binding patterns. The query
optimizer automatically chooses the most promising search definitions for a
given query to a WSMED view. Each search definition provides a different
way of using the web service operations to retrieve food items. The binding
patterns are:

• ffff- all the attributes of the view food are free in the query. That is, it
does not specify any attribute selection value. In this case the
search definition specifies that all food items should be returned.

• fffb- a value is specified only for fourth attribute gpcode. This means
that the search definition returns all food items for a given food
group code.

• fbff- a value is specified in the query only for the second attribute
keyword, i.e. all food items associated with the given keyword are
retrieved.

• fbfb- both the values keyword and gpcode are specified in the query,
finding the relevant food items.

In our example query the binding pattern is fbfb. The search definitions are
defined as queries that all call a function foodDescr in different ways. The
function foodDescr is also defined as a declarative query (section 5.1) that
wraps the web service operation SearchFoodByDescription given two
parameters FoodKeywords and FoodGroupCode. It selects relevant pieces of
a call to the operation SearchFoodByDescription to extract the data from the
data structure returned by the operation.

To simplify sub-queries and provide heuristics for estimating selectivities,
it is important for the system to know what attributes in the view are
(compound) keys [18]. Therefore, the user can specify key constraints for a
given view and set of attributes by a system function declare_key, e.g.:

 44

declare_key(“food”, {”ndb”});

Key constraints are not part of WSDL and require knowledge about the
semantics of the web service. In our example web service the attribute ndb is
the key. The (compound) key attributes are specified as a set of attribute
names for a given view (e.g. {“ndb”}) . Multiple keys can be specified by
several calls to declare_key.

The query optimizer may also need to estimate the cost to invoke the
query, and an estimate of the size of its result, i.e. its fanout. Costs and
fanouts can be specified explicitly by the user if such information is
available. However, normally explicit cost information is not available and
the cost is then estimated by a default cost model that uses available
semantic information such as signatures, keys, and binding patterns to
roughly estimate costs and fanouts.

Key constraints will be shown to be the most important semantic
enrichment in our example, and additional costing information is not needed.

5.1 Search definitions
For defining search definitions WSMED uses AmosQL [48, 49] with special
web service oriented data types. For example, the function foodDescr in
Figure 27, has the following definition:

1.create function foodDescr (Charstring fkw,
2. Charstring fgc)
3. ->Bag of <Charstring ndb,Charstring desc ry,
4. Charstring gpcode>
5. as select re[“NDBNumber”],re[“LongDescription”],
6. re[“FoodGroupCode”]
7. from Record out, Record re
8. where out =
9. cwo(“http://ws.strikeiron.com/USDAData?WSDL ”,
10. “USDAData”,
11. “SearchFoodByDescription”,
12. {fkw, fgc}))
13. and re in out[“SearchFoodByDescriptionResult ”];

Given a food keyword, fkw, and a group code, fgc, the function foodDescr
returns a bag of result rows extracted from the result of calling the web
service operation named SearchFoodByDescription. Any web service
operation can be called by the built-in function cwo (line 9). Its arguments
are the URI of WSDL document that describes the service (line 9), the name
of the service (line 10), an operation name (line 11), and the input argument
list for the operation (line 12). The result from cwo is bound to the variable
out (line 8). It holds the output from the web service operation temporarily

 45

stored in WSMEDs local database. The system automatically converts the
input and output messages from the operation into records, sequences, and
other data structures. In our example, the argument list holds the parameters
FoodKeywords and FoodGroupCode (line 12). The result out is a record
structure from which only the attribute SearchFoodByDescriptionResult is
extracted (line 13). Extractions are specified using the notation s[k], where s
is a variable holding a record, and k is the name of an attribute.

The search definition selects relevant parts of the result from calling the
operation. In our example, the relevant attributes are NDBNumber,
LongDescription, and FoodGroupCode, which are all attributes of a record
stored in the attribute SearchFoodByDescriptionResult of the result record.

In our example it turns out that, when both foodkeywords and
foodgroupcode are empty strings, the operation SearchFoodByDescription
returns descriptions of all available food. On the other hand, if foodkeywords
is empty but foodgroupcode is known, the web service operation will return
all food with that group code. Similarly, if foodgroupcode is empty but
foodkeywords is known, the web service operation will return all food with
that keyword. If both foodkeywords and foodgroupcode are non-empty, the
operation will return descriptions of all food items of the group code with
matching keywords. This knowledge about the semantic of the web service
operation SearchFoodByDescription is used to define the search definitions
in Figure 27.

 46

6. Impact of key constraints

To illustrate the impact of key constraints we define two other views in
terms of the WSMED view food. The view foodclasses is used to classify
food items while fooddescriptions describes each food item:

create view foodclasses(ndb, keyword, gpcode)
as select ndb,keyword,gpcode from food;

create view fooddescriptions(ndb, descry)
as select ndb, descry from food;

This scenario is natural for our example web service that treats foodclasses
different from fooddescriptions. The following SQL query accesses these
views.

select fd.descry
from foodclasses fc, fooddescriptions fd
where fc.ndb=fd.ndb and fc.gpcode=’1900’;

First the example query is translated by the calculus generator (Figure 23)
into a domain calculus expression4:

{l | foodclasses(ndb,keyword,gpcode) ∧∧∧∧
 fooddescriptions (ndb,descry) ∧∧∧∧
 descry=l ∧∧∧∧
 gpcode=’1900’}

The definitions of the views foodclasses and fooddescriptions are defined in
domain calculus as5:

foodclasses:{ndb, keyword, gpcode| food(ndb, keywor d,
*, gpcode)}

fooddescriptions:{ndb,descry | food(ndb, *, descry,
*)}

4 The variables are implicitly quantified.
5 ‘*’ means don’t care.

 47

Given these view definitions the calculus expression is transformed by
the view processor (Figure 23) into:

{l |food(ndb,*,*,’1900’) ∧∧∧∧
 food(ndb,*,l,*)}

Here the predicate food represents our WSMED view. At this point the
added semantics that ndb is the key of the view play its vital part. Two
predicates p(k,a) and p(k,b) are equal if k is a key and it is then inferred that
the other attributes are also equal, i.e. b=a [18]. If a key constraint that ndb
is the key is specified, this is used by the query rewriter to combine the two
calls to food:

{l | food(*,*,l,’1900’)}

Without knowing that ndb is the key the transformation would not apply and
the system would have to join the two references to the view food in the
expanded query. The simplification is very important to attain a scalable
query execution performance as shown in Chapter 7.

Figure 28. Execution plan with full semantic enrichment

Figure 29. Naïve execution plan

<ndb, descry, gpcode>

<ndb, descry, gpcode>

<gpcode>

γ foodDescr(“”,gpcode) γ foodDescr(“”,””)

∞ NLJ

<ndb, descry, gpcode>

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descry, gpcode>

 48

The next step is to select the best search definition for the query. The
heuristics is that if more than one search definition is applicable, the system
chooses the one with the most variables bound. Since l is the query output
and gpcode is given, the binding patterns ffff and fffb both apply, and the
system chooses fffb because it is considered cheaper by default. The call to
food then becomes:

{l | l=foodDescr(“”,”1900”)}

Similar to relational database optimizers, given the definition of foodDescr,
a cost based optimizer generates the algebra expression in Figure 28, which
is interpreted by the execution engine. The apply operator (γ) calls a function
producing one or several result tuples for a given input tuple and bound
arguments [27]. By contrast, Figure 29 shows an execution plan for the
non-transformed expression where the system does not know that ndb is key.
It is using a nested loop join (NLJ) to join the search definitions. An
alternative possible better plan based on hash join (HJ) that materializes the
inner web service call is shown in Chapter 7.

In case no costing data is available about the search definitions (which is
the case here), the system uses built in heuristics, i.e. a default cost model.
In our case the cost based optimizer produces the plan in Figure 28 which is
optimal for our query.

 49

7. Query Performance

To determine the impact of semantic enrichment on query performance, we
have experimented with four different kinds of query execution strategies.
They are:
1. The naïve implementation does not use any semantic enrichment at all

and no binding pattern heuristics. That is, no key is specified for the food
view definition and no default cost model was used. This makes the
search definition be regarded as a black box called iteratively in a nested
loop join since the system does not know that foodDescr returns a large
result set when both arguments are empty. The execution plan in Figure
29 shows the naïve plan.

2. With the default cost model the system assumes that the view food is
substantially more expensive to use when attribute gpcode is not known
than when it is known, i.e. it is cheaper to execute a search definition
where more variables are bound. Still there is no key specified. Figure
32 illustrates the plan.

3. Figure 33 shows the execution plan with the default cost model and a
hash join strategy where the results from web service operation calls are
materialized by using hash join to avoid unnecessary web service calls.
This can be done only when the smaller join operand can be materialized
in main memory.

4. With full semantic enrichment the key of the view is specified. Figure 28
shows the execution plan.

As shown in Figure 30 the naïve strategy was the slowest one, somewhat
faster than using the default cost model with nested loop join. The default
cost model with a hash join strategy scaled significantly better, but requires
enough main memory to hold the inner call to foodDescr. Figure 31
compares the default cost model with hash join with the performance of full
semantic enrichments. The hash join strategy was around five times slower.
This clearly shows that semantic enrichments are critical for high performing
queries over web services. The diagrams are based on the experimental
results in Table 3 and the experiment was made by using the real values to
actually retrieve the results through web service operations. VG, NF, S1, S2,
S3, and S4 denote the value used for parameter groupcode, the number of
food items (actual fanout), and the execution time in seconds for the four
different strategies.

 50

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

0 100 200 300 400 500 600 700 800 900

Nu m be r of Food Ite m s

R
es

po
ns

e
T

im
e(

se
c)

full semantic enrichment hashjoin strategy

default cost model naïve implementation

Figure 30. Performance comparison of the four query execution strategies

VG NF S1 S2 S3 S4

0900 303 1985.14 1512.74 5.77 1.22

0600 390 3177.28 1848.28 5.55 1.33

1400 219 1831.05 1041.74 5.50 1.08

1100 779 4891.13 3785.30 6.22 1.69

2000 157 1655.48 777.31 5.41 0.94

0800 359 3114.28 1723.28 5.59 1.35

0400 201 1914.23 955.38 6.38 1.08

1800 517 3524.34 2452.22 5.93 1.33

 51

2200 132 1741.51 645.03 5.62 0.93

1900 293 2595.22 1415.98 5.58 1.19

1300 729 5596.38 3478.72 6.40 1.74

Table 3. Experimental results

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 200 400 600 800 1000

Number of Food Items

R
es

p
o

n
se

 T
im

e(
se

c)

 hash join strategy full semantic enrichment

Figure 31. Performance comparison hash join and full semantic query execution
strategies

With the naive strategy the system does not use any binding pattern
heuristics and will call foodDescr with empty strings (γfoodDescr(“”,””)) which
produces large costly results containing all food items in the outer loop. This
is clearly very slow.

With the default cost model strategy the system assumes that queries over
the view food produce larger results when the attribute groupcode is
unknown than when it is known. Based on this the call to foodDescr with a

 52

known groupcode value is placed in the outer loop of a nested loop join.
This clearly is a better strategy than the naïve implementation.

Figure 32. Execution plan for default cost model query execution strategy

Finally by utilizing key constraints in the WSMED view definition the
system will know that the two applications of foodDescr can be combined
into one call. With this full enrichment strategy only one web service
operation call is required for execution of the query and no hash join is
needed. We notice that this is the fastest and most scalable plan and that it
needs no costing knowledge.

Figure 33. Execution plan for hash-join strategy

∞ HJ

<ndb, descry, gpcode>

γ foodDescr (“”,gpcode) γ foodDescr (“”,””)

<ndb, descry, gpcode> <ndb, descry, gpcode>

<gpcode>

<ndb, descry, gpcode>

<ndb, descry, gpcode>

<gpcode>

γ foodDescr(“”,gpcode) γ foodDescr(“”,””)

∞ NLJ

<ndb, descry, gpcode>

 53

8. Related work

This chapter presents the overviews of the systems using the mediator
approach to integrate data from heterogeneous data sources and the
ontologies used to represent web services semantics. The important
contributions and main functionalities of these systems briefly analyzed and
compared with the WSMED system.

Web Service Management System (WSMS)
Figure 34 illustrates the WSMS system [53]. It provides DBMS-like
capabilities when data sources are web services and enables queries against
multiple web services. It consists of three major components. The metadata
component manages metadata, registration of new web services, and
mapping their schema to an integrated view provided to the client

Figure 34. WSMS

A client can query the system with a given integrated schema. WSMED also
resemble this feature with the support of the WSDL importer component. It
automatically extracts the meta-data from the given WSDL document to
represent it using the web service schema. In WSMS optimization and
execution of declarative queries, as well as invoking relevant web services
are managed by the query processing and optimization component. The
profiling and statistics component profiles the response time of web services
and maintains relevant statistics of data returned through web services. This
component supports query optimization decision makings.

Metadata Component

Query processing and
optimization
component

Profiling and Statistics
component

Web service 1

Web service 2

Web service n

W
eb

 s
er

vi
ce

 a
d

ap
te

rs

S
Q

L
-l

ik
e

in
te

rf
ac

e Query

Result
s

 54

Precedence constraints exist when querying multiple web services. For
example, to retrieve data from one web service w1 it may expect output of
another web service w2. Therefore w2 will be queried before w1 is accessed.
Due to the restricted web service interfaces query processing over web
services are considered by WSMS as work flow or pipeline processing.
Initially some input data is fed to the WSMS and consequently this data is
processed through a sequence of web service calls. Query processing in this
scenario is sped up by pipelined parallelism because web services that are
independent of precedent constraints can be executed in parallel.

The major contributions of WSMS are:
• When multiple web services are queried and some of them are

executed in parallel the execution time is influenced by the slow
response of web services. This is kind of bottleneck cost metric is
formalized.

• Algorithms are developed for arranging web services in the pipeline
to maximize the throughput in the presence of precedence
constraints.

• When data sent to web services in chunks, the system estimates the
optimal chunk size.

WSMED allows SQL queries to the wrapped web services as WSMS.
WSMS currently concentrate on optimizing pipelined execution of web
service queries. In contrast WSMED utilizes semantic enrichments for
efficient query processing over multi-level views of web services. The
parallel execution of web services is planned as the future work of WSMED.

Garlic
Garlic [55] supports the mediator approach to provide an integrated view

of a variety of legacy data sources. Each data source is associated with a
smart wrapper. In addition Garlic supports its own repository for Garlic
complex objects that users can create to bind together existing objects from
the data sources. Garlic's data model and programming interface are based
upon the Object Database Management Group (ODMG) [69] standard.

Garlic objects are can be accessed both through the C++ programming
interface and Garlic’s query language which is the extension of SQL to
support path expressions and nested collections. Similarly, WSMED is using
mediator-wrapper approach and SQL query interfaces. The global meta-data
of Garlic describes a unified schema of the wrapped data sources and it
doesn’t contain any a priori knowledge about the capabilities of the sources.
By contrast, WSMED enriches the basic meta-data with user given binding
patterns and key constraints to represent the sources’ capabilities

In Garlic wrappers model the contents of the underlying data sources as
Garlic objects and then invoke the methods on the objects and retrieve the
attributes. Other functionalities of Garlic wrappers are participating in query

 55

planning and execution. Further, wrappers represent restricted declarative
knowledge of source capabilities as they don’t have any capability
specification languages. Instead wrappers represent the sources’ querying
capabilities as methods. Each wrapper determines on a case-by-case basis
the portion of the original user query its underlying source could answer.

By contrast, WSMED supports user provided semantic enrichments such
as binding patterns to identify data sources’ capabilities. Based on this
knowledge, the query processor can invoke the appropriate web service
operation call. Garlic’s query processor didn’t use any knowledge such as
the key constraints to simplify the sub queries, unlike WSMED that utilizes
key constraints to efficiently querying the sources. Further, WSMED
optimizes multi-level views by using key constraints to integrate the
different web service operations from different of web services.

TSIMMIS
TSIMMIS [20] also uses the mediation approach for data integration from
multiple heterogeneous sources to provide users with integrated views of
data. It transforms a user query for the integrated views into a collection of
queries to sources and the results from the source queries are post-processed
to answer the user's query. Wrappers are defined with the Wrapper
Specification Language (WSL) to query the underlying data source.
TSIMMIS define data source descriptions and query capabilities by rules.

WSMED also represents capabilities of sources accessible through web
services but the capability specification is based on binding patterns which
are simpler than the general rule based constraints of TSIMMIS. TSIMMIS
has a logic-based object-oriented language Mediation Specification
Language (MSL) used to specify the mediators. Mediators and wrappers are
automatically produced by wrapper and mediator generators from the
descriptions of their functionalities. By contrast WSMED uses a built-in
common web service wrapper to access any kind of web services and allows
users to create multi-level views and SQL queries over the views to mediate
the web service operations. Furthermore the views are enriched with the user
given semantics such as binding patterns and key constraints.

TSIMMIS uses a lightweight Object Exchange Model (OEM) to transport
information among the components mediators, wrappers, and sources. The
query language Lightweight Object Repository Language (LOREL) is used
for user queries. Using all those components TSIMMIS build a mediator
network which contains mediator-wrapper, wrapper-data source, and
mediator-mediator interactions for information integration.

In TSIMMIS, query execution is performed in three phases. The logical
plan generated by the view expander module is passed to the plan generator
module. All the source queries that can process parts of a logical plan are
identified during the initial step of the plan generation process. The
capabilities of the sources are also taken into account. The second step is to

 56

find the feasible execution sequences of source queries based on the binding
requirements. During the final optimization phase the optimizer chooses the
best feasible plan by applying standard query optimization techniques.
However, TSIMMIS does not use any key constraints to simplify the queries
for efficient query processing.

Information Manifold
Information Manifold [38] provides a uniform access to a set of
heterogeneous information sources accessed through the internet and
supports a mechanism for declarative description of contents and query
capabilities of information sources. There is a clear distinction between a
declarative source description and the real details for interaction with the
information sources. The capabilities of sources are described using
capability records that describe properties such as the number of attributes
that can be retrieved as an output, the maximum and minimum number of
inputs allowed, and the possible outputs from the source.

By contrast, WSMED uses binding patterns that are simpler compared
with capability records. In Information Manifold the source description are
used to prune the collection of information sources for a given user query
and to generate executable query plans. It uses a relational model augmented
with certain object-oriented features for describing and reasoning about the
contents of information sources and keeps an integrated view of sources
known as world view as a collection of virtual relations and classes.

Instead WSMED supports multi-level views with user given semantic
enrichments. Information Manifold uses different interface programs to wrap
different data sources. It devices the semantically correct query plan based
on the ordering of sub goals of a given query in such a way that plan will be
executable by adhering sources’ capabilities. Unlike WSMED, there are no
simplifications made based on the key constraints of the mediator view.

Web Query Optimizer System
The architecture of the mediator and wrapper in Figure 35 [59] is

proposed for Internet accessible web sources with limited query capabilities.
Each call to a source defined as WebSource Implementation (WSI) that
associates both capability and cost. The limited query capabilities of a source
are defined by an input-output relationship ior: Input→Output where Input
is a set of attributes that must be bound and Output is the set of projected
output attributes.

Capability based rewriting of the query is processed by the CBR Tool.
Another important contribution is the two-phased query optimizer. The first
phase known as pre-optimization phase the web query optimizer (wqo)
selects one or more WSIs. By using cost-based heuristics wqo evaluates the
selection of WSI and chooses a good pre-plan. Then the relational optimizer
devices a best plan.

 57

Figure 35. Mediator Architecture for web sources

The web query optimizer also follows a similar approach as WSMED to
associate the source capabilities with binding patterns. In particular WSMED
extends multi-directional foreign functions [40] to define semantically
enriched views extracting data from the results of web service operations
using an object-oriented query language [48, 49]. Furthermore, WSMED
utilizes semantic enrichments of key constraints to optimize the multi-level
views of web services with different capabilities while the web query
optimizer only uses binding patterns to device query plan.

OWL-S
OWL-S [41] is an extension of the semantic web ontology language OWL to
define web service ontologies. It provides a set of structures for describing
the properties and capabilities the web services in unambiguous, computer-
interpretable form. OWL-S enables:

• Automatic Web service discovery: is an automated process to locate
web services that provide a certain class of service capabilities,
while holding user specified constraints.

• Automatic Web service invocation: is the automatic invocation of a
web service by a software component, given only a description of
that service, in contrast to when that software component has to be
pre-programmed to call that particular service. That is, OWL-S

CBR Tool

Web Query
Optimizer

Evaluation Engine

Relational
Optimizer

Catalogue

WQ Broker

Web Wrapper

Web Wrapper

Web
Source

Web
Source

Query

 58

provides an application programming interface that includes the
semantics of the arguments of web service calls, and the semantics
of the messages that are returned when the services succeed or fail.
A software component can interpret this mark-up to understand
what input is necessary to invoke the service, and what information
will be returned.

• Automatic Web service composition and interoperation: involves the
automatic selection, composition, and interoperation of web
services to perform some complex task, given a high-level
description of a user objective.

Figure 36. Service ontology

OWL-S supports a service ontology (Figure 36), where a service profile
describes what a service does in a way understandable by a service seeking
agent. The service model describes how to use the service, by detailing the
semantic content of requests, the conditions under which particular output
will occur, and, where necessary, the step by step processes leading to those
output. The service grounding states the details of how a service can be
accessed by specifying communication protocols, message formats, and
other service-specific details such as port numbers used in contacting the
service. In addition, the service grounding must specify, for each semantic
type of input or output specified in the service model, an unambiguous way
of exchanging data elements of that type with the service, i.e. serialization
techniques. A service can be described by at most one service model, and a
service grounding must be associated with exactly one service.

described-by

provides

presents

Service

Service Profile

Service Grounding

Service Model

 59

WSMED supports automatic web service invocation by providing web
service description for any web services with a built-in function cwo (section
5.1). Service discovery and composition need to be analyzed further in
future within the semantic web context.

 60

9. Conclusions and future work

We devised a general approach to query data accessible through web
services by defining multi-level views of data returned from web service
operations and allowing SQL queries over these views. Given the URI of a
WSDL description of a web service, WSMED automatically imports the
basic meta-data from the WSDL file and represents them as a database
schema. In terms of the database schema representation, a user can define
multi-level views of web service operations using WSMED's query
language. They can then be queried using SQL to search result structures
from SOAP messages being the response of a web service operation calls.
WSMED exploits the SOAP protocol to marshal messages to invoke a web
service operation and makes use of HTTP for transmission of messages. We
addressed the research question one in the Chapter 1 by deploying WSDL,
SOAP and XML Schema with WSMED to wrap the data sources accessible
through the web services. Further, WSMED allows the user to associate
different search definitions with a given WSMED view, depending on the
binding pattern of a query to the view, i.e. what view attributes are known. A
WSDL operation signature description does not provide any information
about which parts of the signature is a key to the data accessed through the
operation. Instead the user can add key constraints when defining WSMED
views.

The performance of queries to multi-level WSMED views varied very
substantially depending on what query processing strategy is used. We
evaluated four different query processing strategies using WSMED and
existing web services. Our experiments showed that binding patterns and
key constraints are essential for scalable performance when multi-level
views are defined.

We gave an answer to research question two by defining multi-level
views and showing that those views can be queried with SQL. The query
optimizer automatically select the best search definition based on the
heuristics of the provided binding patterns and simplifies the web service
calls by identifying overlaps between different sub-queries and views calling
the same web service operation. Normally explicit cost information is not
available for call to a web service operation and the cost is then estimated by
a default cost model that uses available semantic information such as keys,
and binding patterns to roughly estimate costs and fanouts. By incorporating
these features, WSMED partially answered research question three.

 61

Generally web service mediation involves more than one operation from
different web services. The common queries in this scenario have joins of
views and those views are created in terms of the different operations from
the diverse web services. Some web service operation calls need inputs from
some of the other operations’ outputs, namely precedence constraints. To
optimize these kinds of web service operation calls in WSMED, we have to
investigate synergies of pipelined execution strategies of web service
operation calls as in WSMS [53]

Generally users have to pay to access commercial web services. Reducing
the number of redundant web service calls is a decisive benefit from an
economic perspective. To gain this kind of performance benefit, the pruning
of superfluous web service operation calls is crucial especially those calls
embedded with the join queries. Adaptive data partitioning (ADP) [32],
which is based on the idea of dividing the source data into regions, each
executed by different, complementary plans, is also a useful approach. Some
prominent approaches like, passing adaptive information to prune useless
results in the early stage of query execution without interrupting the query
plan need to be studied. These kinds of adaptive query processing techniques
need to be investigated further to improve the query optimization capability
of the WSMED. Incorporating partial evaluation, a program transformation
technique [33], during the query optimization is another interesting approach
to investigate in this context. The partial evaluation reduces queries before
the cost-based optimization by simplifying the query by iteratively
evaluating some predicates at compile time until a fix-point is reached.
These are some future directions to provide further answers to research
question three.

Currently the semantic enrichments are added manually. Future work will
investigate when it is possible to automate this and how to efficiently verify
that an enrichment is valid. For example, determination of key constraints is
currently added manually, and this could be automated by querying the
source. Another issue is how to minimize the required semantic enrichments
by self tuning cost modeling techniques [29] based on monitoring the
behavior of web service calls.

Currently we assume all web service operations used in queries are side
effect free. Another issue is semantic enrichments to allow SQL updates of
web service data views.

The semantic web is an emerging prominent approach for the future data
representations where WSDL working groups are proposing standards to
incorporate semantic web representations [62]. We will next investigate the
mediation of web services based on semantic web representations like
RDF[35] and RDF-Schema [10].

We summarize that we answered research questions one and two by
developing WSMED. Research question three is partially answered and

 62

further investigation is needed for a complete answer. Research questions
four and five is going to be answered in the ongoing work.

 63

Appendix A: WSDL document structure

<wsdl:definitions name="nt 6"? targetNamespace="uri"?>
<import namespace="uri" location="uri"/>* 7
 <wsdl:documentation /> ? 8

<wsdl:types> ?
 <wsdl:documentation />?
 <xsd:schema />*
 <-- extensibility element --> *
</wsdl:types>

<wsdl:message name="nt"> *
 <wsdl:documentation />?
 <part name="nt" element="qname 9"? type="qname"?/> *
</wsdl:message>

<wsdl:portType name="nt">*
 <wsdl:documentation />?
 <wsdl:operation name="nt">*
 <wsdl:documentation /> ?
 <wsdl:input name="nt"? message="qname">?
 <wsdl:documentation /> ?
 </wsdl:input>
 <wsdl:output name="nt"? message="qname">?
 <wsdl:documentation /> ?
 </wsdl:output>
 <wsdl:fault name="nt" message="qname"> *
 <wsdl:documentation /> ?
 </wsdl:fault>
 </wsdl:operation>
</wsdl:portType>

<wsdl:binding name="nt" type="qname">*
 <wsdl:documentation />?
 <-- extensibility element --> *
 <wsdl:operation name="nt">*
 <wsdl:documentation /> ?

6 nt – nmtoken[9]
7 * - zero or more
8 ? - zero or one
9 XML qualified name [6]

 64

 <-- extensibility element --> *
 <wsdl:input> ?
 <wsdl:documentation /> ?
 <-- extensibility element -->
 </wsdl:input>
 <wsdl:output> ?
 <wsdl:documentation /> ?
 <-- extensibility element --> *
 </wsdl:output>
 <wsdl:fault name="nt"> *
 <wsdl:documentation /> ?
 <-- extensibility element --> *
 </wsdl:fault>
 </wsdl:operation>
</wsdl:binding>

<wsdl:service name="nt"> *
 <wsdl:documentation />?
 <wsdl:port name="nt" binding="qname"> *
 <wsdl:documentation /> ?
 <-- extensibility element -->
 </wsdl:port>
 <-- extensibility element -->
 </wsdl:service>
 <-- extensibility element --> *

</wsdl:definitions>

 65

References

1. T.Andrews, Business Process Execution Language for Web Services, Version
1.1, published online at ftp://www6.software.ibm.com/software/developer
/library/ws-bpel.pdf, 2003

2. S.Bajaj et al, Web Services Policy Framework (WSPolicy), published online at
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-
policy-2006-03-01.pdf, 2006

3. K.Ballinger, P.Brittenham, A.Malhotra, W.A. Nagy, and S.Pharies, Web
Services Inspection Language (WS-Inspection), published online at
ftp://www6.software.ibm.com/software/developer/library/ws-wsilspec.pdf, 2001

4. D. Beckett, RDF/XML Syntax Specification (Revised), W3C Recommendation,
published online at http://www.w3.org/TR/rdf-syntax-grammar/, 2004

5. T.Bellwood et al, UDDI Version 3.0.2, UDDI Spec Technical Committee Draft,
published online at http://uddi.org/pubs/uddi_v3.htm#_Toc85907967, 2004

6. P.V.Biron, K.Permanente, and A.Malhotra, XML Schema Part 2: Datatypes
Second Edition, W3C Recommendation, published online at
http://www.w3.org/TR/xmlschema-2/#Qname, 2004

7. S.Boag, D.Chamberlin, M.F. Fernández, D.Florescu, J.Robie, and J.Siméon,
XQuery 1.0: An XML Query LanguageW3C Candidate Recommendation,
published online at http://www.w3.org/TR/xquery/, 2006

8. D.Booth, H.Haas, F.McCabe, E.Newcomer, M.Champion, C.Ferris, and
D.Orchard, Web Services Architecture,W3C Working Group Note, published
online at http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ , 2004

9. T.Bray, J.Paoli, C. M. Sperberg-McQueen, E.Maler, and F.Yergeau, Extensible
Markup Language (XML) 1.0 (Third Edition),W3C Recommendation,
published online at http://www.w3.org/TR/2004/REC-xml-20040204/ , 2004

10. D. Brickley and R. V. Guha, RDF Vocabulary Description Language 1.0: RDF-
Schema, published online at http://www.w3.org/TR/rdf-schema/, 2004

11. E.Christensen, F.Curbera, G.Meredith, and S. Weerawara na, Web services
description language (WSDL) 1.1., W3C Recommendation, published online at
http://www.w3.org/TR/wsdl, 2001

12. J.Clark and S.DeRose, XML Path Language (XPath) Version 1.0, W3C
Recommendation, published online at http://www.w3.org/TR/xpath, 1999

13. E.F.Codd, A relational model of data for large shared data banks,
Communications of the ACM, 13(6),1970,pp 377-387.

14. A.Eisenberg, and J.Melton, SQL:1999, formerly known as SQL3, published
online at http://www.sigmod.org/record/issues/9903/standards.pdf.gz

15. A.Eisenberg, and J.Melton, SQL/XML is Making Good Progress, ACM
SIGMOD Record, 31(2), 2002

16. R.Elamasri, and S.M.Navathe, Fundamentals of Database Systems, 4th Edition,
ISBN 0-321-20448-4, Pearson Education, 2004, pp 855-856

 66

17. L.Ennser, C.Delporte, M.Oba, and K.Sunil, Integrating XML with DB2 XML
Extender and DB2 Text Extender, published online at http://www.red
books.ibm.com/redbooks/pdfs/sg246130.pdf , IBM Corp., 2001

18. G. Fahl, and T. Risch, Query Processing over Object Views of Relational Data,
The VLDB Journal , 6(4), 1997, pp 261-281.

19. D.C. Fallside, and P.Walmsley, XML Schema Part 0: Primer Second
EditionW3C Recommendation, published online at http://www.w3.org/TR
/xmlschema-0/, 2004

20. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.Rajaraman, Y. Sagiv, J.D.
Ullman, V. Vassalos, and J.Widom, The TSIMMIS Approach to Mediation:
Data Models and Languages, In Journal of Intelligent Information Systems,
8(2): 117-132, 1997.

21. H.Garcia-Molina, J.D Ullman, and J.Widom, Database Systems: The Complete
Book, ISBN 0-13-098043-9, Prentice Hall, 2002, pp 1047-1069

22. G.Gardarin, A.Mensch, and A.Tomasic, An Introduction to the e-XML Data
Integration Suite, Proc. 8th International Conference on Extending Database
Technology (EDBT ’02), 2002, pp. 297–306.

23. R.Goldman, J.McHugh, and J.Widom, From Semistructured Data to XML:
Migrating the Lore data Model and Query Language, Proc. 2nd International
workshop on the Web and Databases, 1999

24. G.Graefe, Query evaluation techniques for large databases, ACM Computing
Surveys (CSUR), 25(2), 1993, pp 73-169

25. M.Gudgin, M.Hadley, N.Mendelsohn, J.Moreau, and H.Frystyk Nielsen, SOAP
Version 1.2 Part 1: Messaging Framework,W3C Recommendation, published
online at http://www.w3.org/TR/soap12-part1/ ,2003

26. D.L.M.Guinness and F.v.Harmelen, OWL Web Ontology Language Overview,
W3C Recommendation, published online at http://www.w3.org/TR/owl-
features/, 2004

27. L.M.Haas, D. Kossmann, E. Wimmers, and J .Yang, Optimizing Queries across
Diverse Data Sources, Proc. of the 23rd Very Large Data Bases
Conference(VLDB 1997), 1997

28. A. Halverson, V.Josifovski, G.Lohman, H.Pirahesh, and M. Mörschel, ROX:
Relational Over XML, Proc. 30th Very Large Data Bases Conference (VLDB
2004), 2004, pp 264-275

29. Z.He, B.S.Lee, and R.Snapp, Self-Tuning Cost Modeling of User-Defined
Functions in an Object-Relational DBMS, ACM Transactions on Database
Systems, 30(3), pp 812-853, 2005.

30. J.M.Hellerstein, J.F.Naughton, and A:Pfeffer, Generalized Search Trees for
Database Systems, Proc. 21st International Conference on Very Large Data
Bases Conference(VLDB 95), 1995, pp 562-573

31. A.R.Hurson, M.W.Bright, and S.H.Pakzad, Multidatabase Systems: An
Advanced Solution for Global Information Sharing, IEEE Computer Society
Press, 1994

32. Z.G.Ives, A.Y.Halvey, and D.S.Weld, Adapting to Source Properties in
Processing Data Integration Queries, Proc. SIGMOD conference, 2004

33. N. D. Jones, An Introduction to Partial Evaluation, ACM Computing Surveys,
28(3), 1996

34. V.Josifovski, T.Katchaounov, and T.Risch, Optimizing queries in distributed
and composable mediators, Proc. 4th International. Conference on Cooperative
Information Systems (CoopIS'99), 1999.

 67

35. G. Klyne and J. J. Carroll, Resource Description Framework (RDF): Concepts
and Abstract Syntax, published online at http://www.w3.org/TR/rdf-concepts/,
2004.

36. M.Kristjánsson, Building with Oracle XML Database, published online at
http://www.oracle.com/technology/oramag/oracle/04-sep/o54xml.html, 2004

37. K.Lawrence, C.Kaler, A.Nadalin, M.Gudgin, A.Barbir, and H.Granqvist, WS-
SecurityPolicy v1.0, OASIS Working Draft, published online at
http://www.oasis-open.org/committees/download.php/15979/oasis-wssx-ws-
securitypolicy-1.0.pdf, 2005

38. A.Y.Levy et al., Querying Heterogeneous Information Sources Using Source
Descriptions, Proc. of 22nd Very Large Data Bases Conference(VLDB 96), 1996

39. C.Li et al., Capability Based Mediation in TSIMMIS, Proc. of the 1998 ACM
SIGMOD international conference on Management of data, 564-566,1998.

40. W. Litwin, and T. Risch, Main Memory Oriented Optimization of OO Queries
using Typed Datalog with Foreign Predicates, IEEE Transactions on Knowledge
and Data Engineering , 4(6), 517-528, 1992.

41. D. Martin et al., OWL-S: Semantic Markup for Web Services, published online
at http://www.ai.sri.com/daml/services/owl-s/1.2/overview/

42. J.Naughton, et al. , The Niagara Internet Query System, IEEE Data Engineering
bulletin, 24(2) , 2001, pp. 27-33

43. M.Nicola, B. Linden, Native XML Support in DB2 Universal Database, Proc.
of the 31st Very Large Data Bases Conference(VLDB 2005), 2005

44. Y.Papakonstantinou, A.Gupta, and L.Haas, Capabilities-base query rewriting in
mediator systems, Proc. of Conference on Parallel and Distributed Information
Systems, 1996

45. E.Prud'hommeaux, and A,Seaborne, SPARQL Query Language for RDF,W3C
Working Draft, published online at http://www.w3.org/TR/rdf-sparql-query/,
2006

46. J.Postel, SIMPLE MAIL TRANSFER PROTOCOL, RFC 821, published online
at http://www.ietf.org/rfc/rfc0821.txt, 1982

47. J. Postel, and J. Reynolds, FILE TRANSFER PROTOCOL (FTP), published
online at http://tools.ietf.org/html/rfc959,1985

48. T.Risch and V.Josifovski, Distributed Data Integration by Object-Oriented
Mediator Servers, Concurrency and Computation: Practice and Experience J.,
13(11), John Wiley & Sons, 2001, pp 933-953.

49. T.Risch, V.Josifovski, and T.Katchaounov, Functional Data Integration in a
Distributed Mediator System, in P.Gray, L.Kerschberg, P.King, and
A.Poulovassilis (eds.): Functional Approach to Data Management - Modeling,
Analyzing and Integrating Heterogeneous Data, ISBN 3-540-00375-4, Springer,
2003, pp 211-238.

50. M.Scardina, XML Storage Models: One Size Does Not Fit All, published online
at http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/sc
ardina_xmldb.html, 2001

51. A.Seaborne, RDQL - A Query Language for RDF, W3C Member Submission,
published online at http://www.w3.org/Submission/RDQL/, 2004

52. D. Shipman, The Functional Data Model and the Data Language DAPLEX,
ACM Transactions on Database Systems, 6(1), 140-173, 1981.

53. U.Srivastava, J.Widom, K.Munagala, and R.Motwani, Query Optimization over
Web Services, Proc Very Large Database Conference(VLDB 2006), 2006

54. H.S.Thompson, D.Beech, M.Maloney, and N.Mendelsohn, XML Schema Part
1: Structures second edition, W3C Recommendation, published online at
http://www.w3.org/TR/xmlschema-1/, 2004

 68

55. M. Tork-Roth, and P. Schwarz, Don’t Scrap It, Wrap It! A Wrapper
Architecture for Legacy Data Sources, Proc. 23rd Very Large Data Bases
Conference(VLDB 1997), 1997.

56. V.Vassalos, and Y.Papakonstantinou, Describing and Using Query Capabilities
of Heterogeneous Sources, Proc. 23rd Very Large Data Bases
Conference(VLDB 97), 1997

57. G. Wiederhold, Mediators in the Architecture of Future Information Systems,
IEEE Computer, 25(3), 1992, pp 38-49.

58. R.Yerneni, C.Li, H.Garcia-Molina, and J.D:Ullman, Computing capabilities of
mediators, Proc. International conference on Management of Data , 1999, pp
443-454.

59. V.Zadorozhny, L.Raschid, M.E.Vidal, T.Urban, and L.Bright, Efficient
Evaluation of Queries in a Mediator for WebSources, Proc. of the 2002 ACM
SIGMOD international conference on Management of data, 85-96, 2002.

60. DB2 XML Extender, published online at http://www-4.ibm.com/software/data
/db2/extenders/xmlext

61. HTTP - Hypertext Transfer Protocol, W3C Architecture domain, published
online at http://www.w3.org/Protocols/

62. Semantic Web Activity, W3C Technology and Society domain, published
online at http://www.w3.org/2001/sw/

63. TRANSMISSION CONTROL PROTOCOL, published online at
http://www.ietf.org/rfc/rfc793.txt, 1981

64. XML-Related specifications (SQL/XML), published online at http://www.sqlx.
org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf, 2005

65. https://saaj.dev.java.net/
66. http://sourceforge.net/projects/wsdl4j
67. http://ws.strikeiron.com/USDAData?WSDL
68. http://www.castor.org/index.html
69. http://www.odmg.org/
70. http://www.w3.org/2002/ws/arch/4/management/
71. http://www.w3.org/XML/Query/

Recent licentiate theses from the Department of Information Technology

2006-012 Stefan Blomkvist: User-Centred Design and Agile Development of IT Systems

2006-011 Åsa Cajander: Values and Perspectives Affecting IT Systems Development and Usability
Work

2006-010 Henrik Johansson: Performance Characterization and Evaluation of Parallel PDE Solvers

2006-009 Eddie Wadbro: Topology Optimization for Acoustic Wave Propagation Problems

2006-008 Agnes Rensfelt: Nonparametric Identification of Viscoelastic Materials

2006-007 Stefan Engblom: Numerical Methods for the Chemical Master Equation

2006-006 Anna Eckerdal: Novice Students' Learning of Object-Oriented Programming

2006-005 Arvid Kauppi: A Human-Computer Interaction Approach to Train Traffic Control

2006-004 Mikael Erlandsson: Usability in Transportation -- Improving the Analysis of Cognitive Work
Tasks

2006-003 Therese Berg: Regular Inference for Reactive Systems

2006-002 Anders Hessel: Model-Based Test Case Selection and Generation for Real-Time Systems

2006-001 Linda Brus: Recursive Black-box Identification of Nonlinear State-space ODE Models

2005-011 Björn Holmberg: Towards Markerless Analysis of Human Motion

2005-010 Paul Sjöberg: Numerical Solution of the Fokker-Planck Approximation of the Chemical
Master Equation

2005-009 Magnus Evestedt: Parameter and State Estimation using Audio and Video Signals

2005-008 Niklas Johansson: Usable IT Systems for Mobile Work

2005-007 Mei Hong: On Two Methods for Identifying Dynamic Errors-in-Variables Systems

2005-006 Erik Bängtsson: Robust Preconditioned Iterative Solution Methods for Large-Scale
Nonsymmetric Problems

2005-005 Peter Nauclér: Modeling and Control of Vibration in Mechanical Structures

Department of Information Technology, Uppsala University, Sweden

