Uppsala University Department of Information Technology

Technical Report 2018-009

Block Generalized Locally Toeplitz Sequences: From the Theory to the Applications

Carlo Garoni, Mariarosa Mazza, and Stefano Serra-Capizzano

May 2018

Abstract:
The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices An arising from virtually any kind of numerical discretization of differential equations (DEs). Indeed, when the mesh fineness parameter n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be a GLT sequence or one of its "relatives", i.e., a block GLT sequence or a reduced GLT sequence. In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the applicative interest, a solid theory of block GLT sequences has been developed only recently, in 2018. The purpose of the present paper is to illustrate the potential of this theory by presenting a few noteworthy examples of applications in the context of DE discretizations.

Available as PDF (1.32 MB, no cover)

Download BibTeX entry.



Uppsala Universitet