Skip to main content
Department of Information Technology

This page is a copy of research/scientific_computing/former/gems_publ (Wed, 31 Aug 2022 15:00:52)

Refereed publications from the GEMS project

  1. Solving inverse electromagnetic problems using FDTD and gradient-based minimization. Erik Abenius and Bo Strand. In International Journal for Numerical Methods in Engineering, volume 68, pp 650-673, 2006. (DOI).
  2. Thin Sheet Modeling Using Shell Elements in the Finite-Element Time-Domain Method. Erik Abenius and Fredrik Edelvik. In IEEE Transactions on Antennas and Propagation, volume 54, pp 28-34, 2006. (DOI).
  3. Rapid solution of parameter-dependent linear systems for electromagnetic problems in the frequency domain. Martin Nilsson. In IEEE Transactions on Antennas and Propagation, volume 53, pp 777-784, 2005. (DOI).
  4. Multipole solution of electromagnetic scattering problems with many, parameter dependent incident waves. Martin Nilsson and Per Lötstedt. In Multiscale Methods in Science and Engineering, volume 44 of Lecture Notes in Computational Science and Engineering, pp 195-203, Springer-Verlag, Berlin, 2005. (DOI).
  5. On the modeling of small geometric features in computational electromagnetics. Fredrik Edelvik. In Multiscale Methods in Science and Engineering, volume 44 of Lecture Notes in Computational Science and Engineering, pp 133-148, Springer-Verlag, Berlin, 2005. (DOI).
  6. Stability of the High Frequency Fast Multipole Method for Helmholtz’ Equation in Three Dimensions. Martin Nilsson. In BIT Numerical Mathematics, volume 44, pp 773-791, 2004. (DOI).
  7. A minimal residual interpolation method for linear equations with multiple right-hand sides. Per Lötstedt and Martin Nilsson. In SIAM Journal on Scientific Computing, volume 25, pp 2126-2144, 2004. (DOI).
  8. The minimum residual interpolation method applied to multiple scattering in MM-PO. Martin Nilsson. In Proc, volume 2003:3 of Antennas and Propagation Society International Symposium, pp 828-831, IEEE, 2003. (DOI).
  9. Iterative solution of a hybrid method for Maxwell's equations in the frequency domain. Johan Edlund, Per Lötstedt, and Bo Strand. In International Journal for Numerical Methods in Engineering, volume 56, pp 1755-1770, 2003. (DOI).
  10. Frequency Dispersive Materials for 3-D Hybrid Solvers in Time Domain. Fredrik Edelvik and Bo Strand. In IEEE Transactions on Antennas and Propagation, volume 51, pp 1199-1205, 2003. (DOI).
  11. An Unconditionally Stable Subcell Model for Arbitrarily Oriented Thin Wires in the FETD Method. Fredrik Edelvik, Gunnar Ledfelt, Per Lötstedt, and Douglas J. Riley. In IEEE Transactions on Antennas and Propagation, volume 51, pp 1797-1805, 2003. (DOI).
  12. A New Technique for Accurate and Stable Modeling of Arbitrarily Oriented Thin Wires in the FDTD Method. Fredrik Edelvik. In IEEE transactions on electromagnetic compatibility (Print), volume 45, pp 416-423, 2003. (DOI).
  13. Parallelization of an unstructured finite volume solver for the Maxwell equations. Jarmo Rantakokko and Fredrik Edelvik. In Parallel Computing: Advances and Current Issues, pp 213-221, Imperial College Press, London, 2002.
  14. A comparison of time-domain hybrid solvers for complex scattering problems. Fredrik Edelvik and Gunnar Ledfelt. In International journal of numerical modelling, volume 15, pp 475-487, 2002. (DOI).
  15. Hybrid time domain solvers for the Maxwell equations in 2D. Erik Abenius, Ulf Andersson, Fredrik Edelvik, Lasse Eriksson, and Gunnar Ledfelt. In International Journal for Numerical Methods in Engineering, volume 53, pp 2185-2199, 2002. (DOI).
  16. An investigation of hybrid techniques for scattering problems on disjunct geometries. Johan Edlund, Stefan Hagdahl, and Bo Strand. In Proc. Millennium Conference on Antennas and Propagation, p 4, ESA Publications, Noordwijk, The Netherlands, 2000.
  17. Hybrid FV-FD Solver for the Maxwell Equations. Fredrik Edelvik, Ulf Andersson, and Gunnar Ledfelt. In Proc. Millennium Conference on Antennas and Propagation, p 4, ESA Publications, Noordwijk, The Netherlands, 2000.
  18. Inverse Electromagnetic Scattering Using the Finite-Difference Time-Domain Method. Erik Abenius, Bo Strand, and Stephane Alestra. In Proc. Millennium Conference on Antennas and Propagation, p 4, ESA Publications, Noordwijk, The Netherlands, 2000.
  19. A fast multipole accelerated block quasi minimum residual method for solving scattering from perfectly conducting bodies. Martin Nilsson. In Proc, volume 2000:4 of Antennas and Propagation Society International Symposium, pp 1848-1851, IEEE, 2000. (DOI).
  20. Explicit Hybrid Time Domain Solver for the Maxwell Equations in 3D. Fredrik Edelvik and Gunnar Ledfelt. In Journal of Scientific Computing, volume 15, pp 61-78, 2000. (DOI).
  21. Analysis of a finite volume solver for Maxwell's equations. Fredrik Edelvik. In Finite Volumes for Complex Applications II: Problems and Perspectives, pp 141-148, Hermes Science Publications, Paris, 1999.

Updated  2022-08-31 15:00:52 by Victor Kuismin.