1) ForAll x red(x) & flower(x) -> beautiful(x) ForAll x flower(x) -> red(x) v yellow(x) v blue(x) ForAll x peterLikes(x) -> beautiful(x) ForAll x blue(x) -> ~beautiful(x) ForAll x yellow(x) -> ~peterLikes(x) (1) ~red(x) v ~flower(x) v beautiful(x) (2) ~flower(x) v red(x) v yellow(x) v blue(x) (3) ~peterLikes(x) v beautiful(x) (4) ~blue(x) v ~beautiful(x) (5) ~yellow(x) v ~peterLikes(x) Assume ~(ForAll x peterLikes(x) & flower(x) -> red(x)) (6) peterLikes(S) (7) flower(S) (8) ~red(S) (9) ~peterLikes(x) v ~blue(x) (3) + (4) (10) ~peterLikes(x) v ~flower(x) v red(x) v yellow(x) (2) + (9) (11) ~peterLikes(x) v ~flower(x) v red(x) (5) + (10) (12) ~flower(S) v red(S) (6) + (11) (13) red(S) (7) + (12) (14) Contradiction! (8) + (13) 2) (defun foo (x y) (cond ((null x) nil) (t (cons (car x) (cons (second x) (cons (car y) (foo (cdr (cdr x)) (cdr y)))))))) 3) A(1) / | \ / | \ B(3) C(2) D 8+13 12+8 6+18 / \ | \ / \ | \ D E(4) D F(5) 14+18 16+5 6+18 16+6 ----- / \ ---- / \ / \ / \ D G D G 22+18 24 26+8 22 ----- -- ---- We can't be certain that we have found the shortest path, because the estimated distance from D is not optimistic. Actually the shortest path is A - D - C - F - G or A - D - E - G. 4) eval[(foo (quote (a b)))] eval[(quote (a b))] (a b) apply[foo, ((a b))] apply[(lambda (x) (fie (cdr x) x)), ((a b))] eval[ (fie (cdr x) x)), ((x (a b)))] eval[(cdr x), ((x (a b)))] eval[x, ((x (a b)))] = (a b) apply[cdr, ((a b))] = (b) eval[x, ((x (a b)))] = (a b) apply[fie, ((b)(a b))] apply[(lambda (x y) (cons x y)), ((b)(a b))] eval[(cons x y)), ((x (b))(y (a b)))] eval[x, ((x (b))(y (a b)))] = (b) eval[y, ((x (b))(y (a b)))] = (a b) apply[cons, ((b) (a b))] ((b) a b) 5) P(E|T)*P(T) P(T|E) = -------------------------------------------------------- P(E|O)*P(O) + P(E|T)*P(T) + P(E|K)*P(K) + P(E|S)*P(S) 0.2*0.4 = ------------------------------------- 0.5*0.2 + 0.2*0.4 + 0.4*0.1 + 0.1*0.3 = 0.32 (or 32%) 6) Auxiliary output: 1) After specialization. 2) When generel models which are specializations of another generel model are removed. 3) When generel models which are not a generalization of some specific model are removed. Give first pos. ex: (t b g e r) Is next pos or neg? n Give next training instance:(s u g c w) (1 (P NIL NIL NIL NIL) (T NIL NIL NIL NIL) (NIL B NIL NIL NIL) (NIL NIL F NIL NIL) (NIL NIL D NIL NIL) (NIL NIL NIL E NIL) (NIL NIL NIL NIL R) (NIL NIL NIL NIL Y)) (2 (NIL NIL NIL NIL Y) (NIL NIL NIL NIL R) (NIL NIL NIL E NIL) (NIL NIL D NIL NIL) (NIL NIL F NIL NIL) (NIL B NIL NIL NIL) (T NIL NIL NIL NIL) (P NIL NIL NIL NIL)) (3 (NIL NIL NIL NIL R) (NIL NIL NIL E NIL) (NIL B NIL NIL NIL) (T NIL NIL NIL NIL)) G = ((NIL NIL NIL NIL R) (NIL NIL NIL E NIL) (NIL B NIL NIL NIL) (T NIL NIL NIL NIL)) S = ((T B G E R)) Is next pos or neg? p Give next training instance:(t u g e r) G = ((NIL NIL NIL NIL R) (NIL NIL NIL E NIL) (T NIL NIL NIL NIL)) S = ((T NIL G E R)) Is next pos or neg? n Give next training instance:(t b f e y) (1 (NIL NIL NIL NIL R) (P NIL NIL E NIL) (S NIL NIL E NIL) (NIL U NIL E NIL) (NIL NIL G E NIL) (NIL NIL D E NIL) (NIL NIL NIL E W) (NIL NIL NIL E R) (T U NIL NIL NIL) (T NIL G NIL NIL) (T NIL D NIL NIL) (T NIL NIL C NIL) (T NIL NIL NIL W) (T NIL NIL NIL R)) (2 (T NIL NIL NIL W) (T NIL NIL C NIL) (T NIL D NIL NIL) (T NIL G NIL NIL) (T U NIL NIL NIL) (NIL NIL NIL E W) (NIL NIL D E NIL) (NIL NIL G E NIL) (NIL U NIL E NIL) (S NIL NIL E NIL) (P NIL NIL E NIL) (NIL NIL NIL NIL R)) (3 (T NIL G NIL NIL) (NIL NIL G E NIL) (NIL NIL NIL NIL R)) G = ((T NIL G NIL NIL) (NIL NIL G E NIL) (NIL NIL NIL NIL R)) S = ((T NIL G E R)) Is next pos or neg? p Give next training instance:(t b g e y) G = ((T NIL G NIL NIL) (NIL NIL G E NIL)) S = ((T NIL G E NIL)) Is next pos or neg? n Give next training instance:(p u g e r) (1 (T NIL G NIL NIL) (T NIL G E NIL) (S NIL G E NIL) (NIL B G E NIL) (NIL NIL G E W) (NIL NIL G E Y)) (2 (NIL NIL G E Y) (NIL NIL G E W) (NIL B G E NIL) (S NIL G E NIL) (T NIL G NIL NIL)) (3 (T NIL G NIL NIL)) G = ((T NIL G NIL NIL)) S = ((T NIL G E NIL)) Is next pos or neg? p Give next training instance:(t b g c r) G = ((T NIL G NIL NIL)) S = ((T NIL G NIL NIL)) ((T NIL G NIL NIL))
Last modified: Fri Jun 11 12:00:05 MEST 2004