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Lecture outline

● Formalisation of requirements in Lustre
● Synchronous observers
● Static V&V of Lustre programs

(using Luke)
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Recap: Lustre

● Synchronous dataflow language, 
textual

● Basic building block: nodes consisting 
of flow definitions

● Basic datatypes: bool, int

● Example: integer register

node IntRegister(newValue : int; store : bool)   
     returns (val : int);
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Recap: correctness

● Software is called correct if it complies 
with its specification

● Often: spec. is a set of requirements 
and/or use cases

● Software that violates spec. contains 
bugs/defects

● Correctness of software can be verified
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Recall

● What are
● static and
● dynamic analysis methods?

Mostly: testing, simulation

Mathematical techniques like
proving, model checking

(used in this lecture)
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Typical V&V in Lustre

● Safety requirements are first 
formulated as text (in, say, English)

● Textual requirements are translated to 
Lustre expressions

● Formal requirements are attached to 
Lustre program in form of
synchronous observers

● Correctness of Lustre program is 
checked using
testing or model checking

Corresponds to
“Safety module” in

Elevator lab



7/41

Synchronous observers

● A synchronous observer for a node
node Prog(parameters) returns(vals);

is a Lustre node of the shape

node ReqProg(parameters)
     returns(ok1, ok2, … : bool);
var vals;
let
   (vals) = Prog(parameters);
   ok1 = requirement1;
   ok2 = requirement2;
   ...
tel

Formalised
requirements,
talking about
parameters

and vals



8/41

Example: multi-state switch

● Example requirements:
● pin1 and pin2 are never true at the 

same time
● pin1 and pin2 are true only if pin0 is 

true

node MultiStateSwitch(pin0 : bool) returns (pin1, pin2 : bool);
var n : int;
let
  n = ResetCounter(true, not pin0);
  pin1 = n > 1 and n < 20;
  pin2 = n >= 20;
tel
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Verification using Luke

● Simulation:
   luke ­­node top_node filename

● Verification:
   luke ­­node top_node ­­verify filename

● returns either
“Valid. All checks succeeded. 
Maximal depth was n”
or
“Falsified output ‘X’ in node ‘Y' 
at depth n”
along with a counterexample.
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What does “All checks 
succeeded” mean?

● Intuitively:
A mathematical proof has been found 
that the synchronous observer never 
returns false

● Implies:
Requirements cannot be violated
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What does “All checks 
succeeded” mean? (2)

● Different from testing:
● All possible program inputs have been 

considered
● However: only meaningful under 

assumption that compiler + hardware 
is correct
→ realistic?

● Luke uses SAT-based
model checking + k-induction
(more details later)
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Counterexamples

● Give diagnostic feedback if 
requirements can be violated

● Example in MultiStateSwitch:
● pin2 is never true Does not

actually hold
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Formalisation of
requirements
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From text to
Lustre expressions

● Textual requirements often use 
patterns with commonly understood 
meaning

● But: text is not always unambiguous;
writing good/precise requirements can 
be difficult

● (Similarly:
Text to C expressions, Elevator lab)
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Common English patterns
English Logic Lustre

(similar for C)

A and B
A but B

A & B A and B

A if B
A when B
A whenever B

... ...

if A, then B
A implies B
A forces B

only if A, B
B only if A

A precisely when B
A if and only if B

A or B
either A or B 

A or B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”
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Common English patterns
English Logic Lustre

(similar for C)

A and B
A but B

A & B A and B

A if B
A when B
A whenever B

B => A B => A

if A, then B
A implies B
A forces B

A => B A => B

only if A, B
B only if A

B => A B => A

A precisely when B
A if and only if B

A <=> B A = B

A or B
either A or B 

A (+) B
(exclusive or)

A xor B

A or B A v B
(logical or)

A or B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”
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Temporal requirements

● Patterns on previous slides are on the 
propositional level

● Requirements often contain temporal 
statements

● Example in MultiStateSwitch:
● if pin2 is true, then pin1 has been true 

sometime in the past

● Common temporal operators in Lustre:
Sofar, HasHappened, Since
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Basic temporal operators:
talking about the past

● Sofar(X):
X has been true since startup
of the program

● HasHappened(X):
X was true sometime since startup of 
the program

● Since(X, Y):
X was true sometime since startup of 
the program, and since then Y was true

Also common:
operators to

talk about the future
(not possible in

Lustre)
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Further operator
commonly used

● RisingEdge(X):
Value of X changes from false to true
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Further temporal example

● In MultiStateSwitch:
● if pin2 is true and pin0 is not released, 

pin2 stays true
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Safety vs. Liveness

● Different classes of requirements
● Safety:

● “Something bad never happens.”

● Liveness:
● “Eventually, something good 

happens.”

● Synchronous observers can only 
express safety properties!
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How does Luke verify
requirements?
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Main techniques of Luke

● Bounded model checking
● Constraint solving to detect error 

traces/counterexamples
● Internally uses a SAT solver
● Standard technique when designing 

hardware

● k-Induction
● Strong form of mathematical induction
● Prove that requirements hold
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Bounded model checking

● Every Lustre program can be 
represented as a set of equations

● E.g.:

node Counter() returns (c : int);
let
  c = 0 -> (pre c + 1);
tel
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Bounded model checking (2)

● We can unwind program/equations to 
generate counterexamples for 
properties

● Let's say, we try to prove for the 
counter that
       “c is always less than 10”
(does not hold)
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Bounded model checking (3)

● Generate k copies of the recurrence 
equations:
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Bounded model checking (4)

● Check whether new equations imply 
property:

● A SAT solver can check this quickly … 
and produce a counterexample
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Bounded model checking (5)

● Bounded model checking can often 
show very quickly that some 
requirement does not hold

● What if a requirement holds?
● Second technique in Lustre: k-induction
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What is k-induction?
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Imagine Fibonacci numbers …
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Let's prove that
all Fibonacci numbers

are non-negative:
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Proof using standard induction

● To show
we prove:

● Base case:
● Step case:

● Does not work for Fibonacci numbers
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Induction with two base cases
(2-induction)

● To show
we can also prove:

● Two base cases:

● “Simpler” step case:

● Works for Fibonacci numbers!
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k-Induction

● Generalises 2-induction to k base cases
● Can be used to verify 

properties/requirements P of 
Lustre programs!

● Base case: prove that P holds in cycles 
0, 1, 2, …, (k-1)

● Step case: assume that P holds in 
cycle i, i+1, i+2, …, i+k-1, then prove 
that P also holds in cycle i+k
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Non-inductive properties

● For some properties P, it can happen 
that step case fails, even though P 
always holds → P is not inductive

● E.g.,                is not inductive for k=1
(but for k=2)

● Some properties are not inductive for 
any k!
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What to do in case of
non-inductive properties?

● Method 1: strengthen the property P
● verify not only P, but a stronger 

property P & Q

● Method 2: make the program to be 
verified more defensive

● handle some cases that cannot actually 
occur
→ Luke might not be able to detect 
that the cases cannot occur
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Summary of Luke V&V

● Bounded model checking
● Used to show that some property

does not hold
● Generate a counterexample in this case

● k-Induction
● Used to show that some property

always holds
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Further reading

● A. Biere, A. Cimatti, E. M. Clarke, and Y. 
Zhu, 1999: “Symbolic Model Checking 
without BDDs”

● Sheeran, Singh, Stålmark, 2000: 
“Checking Safety Properties Using 
Induction and a SAT-Solver”
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Equivalence checking
using observers

● Synchronous observers can also be 
used to prove that two programs have 
the same behaviour

● E.g.
    HasHappened(X) = not Sofar(not X)
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