
1/41

Programming Embedded Systems

Lecture 11
Lustre V&V

Monday Feb 20, 2012

Philipp Rümmer
Uppsala University

Philipp.Ruemmer@it.uu.se



2/41

Lecture outline

● Formalisation of requirements in Lustre
● Synchronous observers
● Static V&V of Lustre programs

(using Luke)



3/41

Recap: Lustre

● Synchronous dataflow language, 
textual

● Basic building block: nodes consisting 
of flow definitions

● Basic datatypes: bool, int

● Example: integer register

node IntRegister(newValue : int; store : bool)   
     returns (val : int);



4/41

Recap: correctness

● Software is called correct if it complies 
with its specification

● Often: spec. is a set of requirements 
and/or use cases

● Software that violates spec. contains 
bugs/defects

● Correctness of software can be verified



5/41

Recall

● What are
● static and
● dynamic analysis methods?

Mostly: testing, simulation

Mathematical techniques like
proving, model checking

(used in this lecture)



6/41

Typical V&V in Lustre

● Safety requirements are first 
formulated as text (in, say, English)

● Textual requirements are translated to 
Lustre expressions

● Formal requirements are attached to 
Lustre program in form of
synchronous observers

● Correctness of Lustre program is 
checked using
testing or model checking

Corresponds to
“Safety module” in

Elevator lab



7/41

Synchronous observers

● A synchronous observer for a node
node Prog(parameters) returns(vals);

is a Lustre node of the shape

node ReqProg(parameters)
     returns(ok1, ok2, … : bool);
var vals;
let
   (vals) = Prog(parameters);
   ok1 = requirement1;
   ok2 = requirement2;
   ...
tel

Formalised
requirements,
talking about
parameters

and vals



8/41

Example: multi-state switch

● Example requirements:
● pin1 and pin2 are never true at the 

same time
● pin1 and pin2 are true only if pin0 is 

true

node MultiStateSwitch(pin0 : bool) returns (pin1, pin2 : bool);
var n : int;
let
  n = ResetCounter(true, not pin0);
  pin1 = n > 1 and n < 20;
  pin2 = n >= 20;
tel



9/41

Verification using Luke

● Simulation:
   luke ­­node top_node filename

● Verification:
   luke ­­node top_node ­­verify filename

● returns either
“Valid. All checks succeeded. 
Maximal depth was n”
or
“Falsified output ‘X’ in node ‘Y' 
at depth n”
along with a counterexample.



10/41

What does “All checks 
succeeded” mean?

● Intuitively:
A mathematical proof has been found 
that the synchronous observer never 
returns false

● Implies:
Requirements cannot be violated



11/41

What does “All checks 
succeeded” mean? (2)

● Different from testing:
● All possible program inputs have been 

considered
● However: only meaningful under 

assumption that compiler + hardware 
is correct
→ realistic?

● Luke uses SAT-based
model checking + k-induction
(more details later)



12/41

Counterexamples

● Give diagnostic feedback if 
requirements can be violated

● Example in MultiStateSwitch:
● pin2 is never true Does not

actually hold



13/41

Formalisation of
requirements



14/41

From text to
Lustre expressions

● Textual requirements often use 
patterns with commonly understood 
meaning

● But: text is not always unambiguous;
writing good/precise requirements can 
be difficult

● (Similarly:
Text to C expressions, Elevator lab)



15/41

Common English patterns
English Logic Lustre

(similar for C)

A and B
A but B

A & B A and B

A if B
A when B
A whenever B

... ...

if A, then B
A implies B
A forces B

only if A, B
B only if A

A precisely when B
A if and only if B

A or B
either A or B 

A or B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”



16/41

Common English patterns
English Logic Lustre

(similar for C)

A and B
A but B

A & B A and B

A if B
A when B
A whenever B

B => A B => A

if A, then B
A implies B
A forces B

A => B A => B

only if A, B
B only if A

B => A B => A

A precisely when B
A if and only if B

A <=> B A = B

A or B
either A or B 

A (+) B
(exclusive or)

A xor B

A or B A v B
(logical or)

A or B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”



17/41

Temporal requirements

● Patterns on previous slides are on the 
propositional level

● Requirements often contain temporal 
statements

● Example in MultiStateSwitch:
● if pin2 is true, then pin1 has been true 

sometime in the past

● Common temporal operators in Lustre:
Sofar, HasHappened, Since



18/41

Basic temporal operators:
talking about the past

● Sofar(X):
X has been true since startup
of the program

● HasHappened(X):
X was true sometime since startup of 
the program

● Since(X, Y):
X was true sometime since startup of 
the program, and since then Y was true

Also common:
operators to

talk about the future
(not possible in

Lustre)



19/41

Further operator
commonly used

● RisingEdge(X):
Value of X changes from false to true



20/41

Further temporal example

● In MultiStateSwitch:
● if pin2 is true and pin0 is not released, 

pin2 stays true



21/41

Safety vs. Liveness

● Different classes of requirements
● Safety:

● “Something bad never happens.”

● Liveness:
● “Eventually, something good 

happens.”

● Synchronous observers can only 
express safety properties!



22/41

How does Luke verify
requirements?



23/41

Main techniques of Luke

● Bounded model checking
● Constraint solving to detect error 

traces/counterexamples
● Internally uses a SAT solver
● Standard technique when designing 

hardware

● k-Induction
● Strong form of mathematical induction
● Prove that requirements hold



24/41

Bounded model checking

● Every Lustre program can be 
represented as a set of equations

● E.g.:

node Counter() returns (c : int);
let
  c = 0 -> (pre c + 1);
tel



25/41

Bounded model checking (2)

● We can unwind program/equations to 
generate counterexamples for 
properties

● Let's say, we try to prove for the 
counter that
       “c is always less than 10”
(does not hold)



26/41

Bounded model checking (3)

● Generate k copies of the recurrence 
equations:



27/41

Bounded model checking (4)

● Check whether new equations imply 
property:

● A SAT solver can check this quickly … 
and produce a counterexample



28/41

Bounded model checking (5)

● Bounded model checking can often 
show very quickly that some 
requirement does not hold

● What if a requirement holds?
● Second technique in Lustre: k-induction



29/41

What is k-induction?



30/41

Imagine Fibonacci numbers …



31/41

Let's prove that
all Fibonacci numbers

are non-negative:



32/41

Proof using standard induction

● To show
we prove:

● Base case:
● Step case:

● Does not work for Fibonacci numbers



33/41

Induction with two base cases
(2-induction)

● To show
we can also prove:

● Two base cases:

● “Simpler” step case:

● Works for Fibonacci numbers!



34/41

k-Induction

● Generalises 2-induction to k base cases
● Can be used to verify 

properties/requirements P of 
Lustre programs!

● Base case: prove that P holds in cycles 
0, 1, 2, …, (k-1)

● Step case: assume that P holds in 
cycle i, i+1, i+2, …, i+k-1, then prove 
that P also holds in cycle i+k



35/41

Non-inductive properties

● For some properties P, it can happen 
that step case fails, even though P 
always holds → P is not inductive

● E.g.,                is not inductive for k=1
(but for k=2)

● Some properties are not inductive for 
any k!



36/41

What to do in case of
non-inductive properties?

● Method 1: strengthen the property P
● verify not only P, but a stronger 

property P & Q

● Method 2: make the program to be 
verified more defensive

● handle some cases that cannot actually 
occur
→ Luke might not be able to detect 
that the cases cannot occur



37/41

Summary of Luke V&V

● Bounded model checking
● Used to show that some property

does not hold
● Generate a counterexample in this case

● k-Induction
● Used to show that some property

always holds



38/41

Further reading

● A. Biere, A. Cimatti, E. M. Clarke, and Y. 
Zhu, 1999: “Symbolic Model Checking 
without BDDs”

● Sheeran, Singh, Stålmark, 2000: 
“Checking Safety Properties Using 
Induction and a SAT-Solver”



39/41

Equivalence checking
using observers

● Synchronous observers can also be 
used to prove that two programs have 
the same behaviour

● E.g.
    HasHappened(X) = not Sofar(not X)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

