Large Language Models:
A New Way to Teach Programming

Leo Porter
University of California San Diego
leporter@ucsd.edu
The rise of Generative AI

https://www.numenta.com/blog/2023/05/02/generative-ai-
Our Plan Today

1. What we know from the growing body of research
2. Discussion of where existing CS1 courses fall short
3. Demo of the workflow with LLMs
4. Our vision for how to teach CS1 incorporating Copilot
5. Q&A
LLMs for programming in the news

• **Satya Nadella**, CEO of Microsoft:

 • "Just like the rise of compilers and interpreters, we believe AI-assisted coding will fundamentally change the nature of software development, giving developers a new tool to write better code easier and faster"

 • Developers are able to code 50% faster using Copilot

• **Jensen Huang**, Nvidia President and CEO:

 • "This computer doesn’t care how you program it, it will try to understand what you mean, because it has this incredible large language model capability. And so the programming barrier is incredibly low"

2. https://www.cnbc.com/2023/05/30/everyone-is-a-programmer-with-generative-ai-nvidia-ceo-.html
LLMs can aid professional Software Engineers (1)

Key survey findings:

• **AI is here and it's being used at scale.** 92% of U.S.-based developers are already using AI coding tools both in and outside of work.

• **Developers also see big benefits to AI.** 70% say AI coding tools will offer them an advantage at work and cite better code quality, completion time, and resolving incidents as some of the top anticipated benefits.

Software developers are using these tools. We need to help students use these tools responsibly.

LLMs can aid professional Software Engineers (2)

- Study on the Impact of Copilot on Developer Productivity [1]
 - Professional software developers (n=95) were asked to write an HTTP server in JavaScript
 - Controlled experiment: treatment group used Copilot, control group did not
 - Copilot group completed the task 56% faster
 - "Our results suggest that less experienced programmers benefit more from Copilot."

LLMs can aid experienced programmers

• Study on experiences of experienced students using LLMs
 • Within-subjects study (n=24); participants were students with prior programming experience
 • Participants completed tasks in Python (e.g. CSV editing, web scraping)
 • No difference between conditions on success rate or task completion time
 • But 19/24 preferred using Copilot
 • 12/24 participants found it hard to fix the code generated by Copilot

How LLMs may impact CS1

• LLM performance on CS1 assignments [1]
 • Evaluation of Copilot on exercises (n=166) in public CS1 question bank
 • Authors used prompt engineering when Copilot gave incorrect code
 • Copilot solved 47.6% of problems on its first attempt and that went up to 79.5% after prompt engineering

• LLM performance on CS1 exams [2]
 • Asked Codex to solve all questions from two Python CS1 exams.
 • Codex solved almost half of the problems on its first attempt
 • Codex got 78.5% on Exam 1 and 78% on Exam 2 (rank 17 out of 71 students)

Instructors vary in how to approach LLMs

• Instructor Opinions about Teaching LLMs
 • Researchers interviewed 20 programming instructors on how they plan to adapt to LLMs
 • Two categories of long-term strategies emerged:

Resist the use of AI coding tools:
- teaching Python fundamentals
- create AI proof assessments
- proctored exams

Embrace AI tools by integrating them
- give personalized help to students
- focus on code reading and critique
- have students collaborate with AI

Lau and Guo. From "Ban It Till We Understand It" to "Resistance is Futile": How University Programming Instructors Plan to Adapt as More Students Use AI Code Generation and Explanation Tools such as ChatGPT and GitHub Copilot. ACM ICER 2023. To appear.
LLMs in CS1 may be beneficial overall (still early though!)

- Novices (n=69), age 10-17, were asked to complete 45 Python tasks
- Each task consisted of a code authoring followed by a code modification part

Figure 1. Summary of our controlled study over 10 sessions (from [1])

During Training

- **Code authoring**: Codex group had 1.8x higher correctness scores and 0.58x completion times

- **Code modification**: Codex group had higher correctness scores, but not statistically significant

- Students in the Codex group reported being more eager to learn programming and felt less stressed, discouraged, and irritated while completing the tasks than those without Codex.

LLMs in CS1 may be beneficial overall (still early though!)

Evaluation Phase

![Evaluation Phase Chart]

Figure 9. Correctness score of tasks on Retention Post Test (from [1])

Our Plan Today

1. What we know from the growing body of research

2. **Discussion of where existing CS1 courses fall short**

3. Demo of the workflow with LLMs

4. Our vision for how to teach CS1 incorporating Copilot

5. Q&A
State of Computer Science as Industry Preparation

• Decades long divide between what is taught in CS courses and the skills needed in industry [1]
 • Well-defined assignments vs. open-ended project requirements
 • Short time span on assignments vs. working with legacy code
 • Working individually vs. working on a team
 • Writing standalone programs vs. adding features to codebases

• Many faculty want to help prepare students for industry and are willing to improve their curriculum to do so [2]

State of CS1 Today

• Long known that students learn less than instructors expect [1]
 • For example: Students struggle writing a basic program (the Rainfall problem) that instructors expect they can complete [1]

• Although failure rates vary, failure rates in CS1 can be high (average failure rate of 28-33% globally) [2]

• Students experience an emotional toll learning how to program [3]

Our Plan Today

1. What we know from the growing body of research
2. Discussion of where existing CS1 courses fall short
3. **Demo of the workflow with LLMs**
4. Our vision for how to teach CS1 incorporating Copilot
5. Q&A
At the Academy of Crime Fighting, each trainee is recognized by a unique 5-digit identifier. The identifier can have any of the following digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The identifier can have leading 0s.

Since Drew the owl has trouble typing numbers, the school makes things easier by ensuring that each successive digit in the identifier is either one digit greater or one digit less than the previous digit. For example, if the first digit is 3, then the successive digit would be 4 or 2. So, 32345 would be a valid trainee identifier, but 32435 would NOT be a valid identifier because the third digit 4 is two digits away from the previous digit 2.

Your task is to write a program that validates an identifier. You are not allowed to use loops or lists.
Hi @copilotbook, how can I help you?

I'm powered by AI, so surprises and mistakes are possible. Make sure to verify any generated code or suggestions, and share feedback so that we can learn and improve.

At the Academy of Crime Fighting, each trainee is recognized by a unique 5-digit identifier. The identifier can have any of the following digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The identifier can have leading 0s.

Since Drew the owl has trouble typing numbers, the school makes things easier by ensuring that each successive digit in the identifier is either one digit greater or one digit less than the previous digit. For example, if the first digit is 3, then the successive digit would be 4 or 2. So, 32345 would be a valid trainee identifier, but 32435 would NOT be a valid identifier because the third digit 4 is two digits away from the previous digit 2.

Your task is to write a program that validates an identifier. You are not allowed to use loops or lists.

Filename
Your filename for this question must be q1.py.
first_digit = int(input())
second_digit = int(input())
third_digit = int(input())
fourth_digit = int(input())
fifth_digit = int(input())

if (second_digit == first_digit + 1 or second_digit == first_digit - 1) and
 (third_digit == second_digit + 1 or third_digit == second_digit - 1) and
 (fourth_digit == third_digit + 1 or fourth_digit == third_digit - 1) and
 (fifth_digit == fourth_digit + 1 or fifth_digit == fourth_digit - 1):
 print("VALID")
else:
 print("INVALID")
When Copilot works well

• A natural language interface to asking computers to do what we want.
• Hasn’t the last 70 years of computer progress leveraged advancements in the ease of communicating our goals with computers?
• For CS1, this could mean communicating with the LLM and not needing to write code or learn syntax.
• But Copilot isn’t always right…
Problem is to add commas (if missing) to a list in a sentence (where the sentence structure is quite rigid). Solution can use string replace, but no conditionals or loops.

• Example 1:
Input: Cats like sleeping eating and purring.

Exp. Output: Cats like sleeping, eating, and purring.

• Example 2:
Input: Alana eats apples oranges, kiwis and bananas.

Exp. Output: Alana eats apples, oranges, kiwis, and bananas.
Solving Another of Dan’s CS1 Assignments

Dan’s writing a new book, but he needs a bit of help with his grammar. Correct the given sentences by adding commas in the correct locations throughout the sentence.

Input
- A single line containing the sentence to be fixed. A sentence is composed of exactly two words, then one or more nouns (each of which may or may not already have a comma after it), then an and (which will not occur anywhere else in the sentence), then one more word followed by a period. Words consist only of lowercase or uppercase letters.
- The input has no leading or trailing spaces.
- Any two consecutive words are separated by exactly one space (see examples below).
- For example, the sentence: Dinner is chocolate, goldfish and mustard. is a valid input, and so is TAs like code exams tests essays and grading.

Output
- Output the sentence with one comma after each noun (nouns in this problem are the words indicated above in the input section). Do not add or modify anything else about the given sentence.

Requirements
- You MUST use the string method replace to solve this problem (i.e. no lists, split, or anything else after week 2).
- Using if-statements or loops of any kind is not allowed.
GitHub Copilot

Hi @copilotbook, how can I help you?

I'm powered by AI, so surprises and mistakes are possible. Make sure to verify any generated code or suggestions, and share feedback so that we can learn and improve.

Write the program for the following task.

Dan's writing a new book, but he needs a bit of help with his grammar. Correct the given sentences by adding commas in the correct locations throughout the sentence.

Filename
Your filename for this question must be q2.py.
Input
- A single line containing the sentence to be fixed. A sentence is composed of exactly two words, then one or more nouns (each of which may or may not already have a comma after it), then an and (which will not occur anywhere else in the sentence), then one more word followed by a period. Words consist only of lowercase or uppercase letters.
- The input has no leading or trailing spaces.
- Any two consecutive words are separated by exactly one space (see examples below).
Code from Copilot

Read the input sentence
sentence = input().strip()

Replace ' and ' with ',', '
sentence = sentence.replace(' and ', ',', and ')

Replace the last space with a comma and a space
sentence = sentence.rsplit(' ', 1)[0] + ',', ' + sentence.rsplit(' ', 1)[1]

Replace all spaces before the last word with a comma and a space
sentence = sentence.replace(' ', ',', ',', sentence.count(' ') - 1)

Print the corrected sentence
print(sentence)
Our Plan Today

1. What we know from the growing body of research
2. Discussion of where existing CS1 courses fall short
3. Demo of the workflow with LLMs
4. Our vision for how to teach CS1 incorporating Copilot
5. Q&A
How we imagined LLMs changing CS1

• Dan and I recognized the sea change in Fall 2022

• Realized the following:
 • Change is necessary
 • LLMs may be empowering!
 • Opportunity to rethink CS1 to address significant problems from the past

• If we need a new class, we need a book for the class…

A New Approach to Learning Programming

• Key Goals:
 • Have students interact with LLMs to solve problems that are meaningful to them
 • Use LLM features to help them understand code
 • Have readers aware of the ethical/legal challenges around LLMs
 • Learn key skills essential to successful software design with LLMs
 • Code reading
 • Testing
 • Debugging
 • Problem decomposition

The workflow when writing software with Copilot

1. Given a large task to solve
2. Perform Problem Decomposition
3. Design functions from leaf up.
4. Design Prompt for Task
5. Generate Code (Copilot)
6. Read Code/Select Code
7. Test the Code
8. Debug Code

Function Design Cycle
• Create the function signature
• Describe the behavior of the function
 • In sufficient detail for Copilot to try to solve it

```python
def findMinPositive(array):
    
    Return the smallest positive integer in array
    If there are no positive integers, return -1
    ```
Skill: Code Reading and Selection

- Understand the code well enough to recognize if it’s trying to solve the task.
- Be able to read multiple suggestions of code and select one that seems likely to help solve the problem.

```python
def findMinPositive(array):
    
    Return the smallest positive integer in array
    If there are no positive integers, return -1
    
    min = -1
    for num in array:
        if num > 0:
            if num < min or min == -1:
                min = num
    return min
```
Skill: Code Testing

- Open- and Closed-box testing
- Understand common case vs. edge-cases
 - understand code well enough to identify possible edge cases
- Use doctest to test the code

```python
def findMinPositive(array):
    
    Return the smallest positive integer in array
    If there are no positive integers, return -1

    >>> findMinPositive([])
    -1

    >>> findMinPositive([-2,-3,-4])
    -1

    min = -1
    for num in array:
        if num > 0:
            if num < min or min == -1:
                min = num
    return min
```
Skill: Debugging

- Use VSCode Debugger to gain insight into the behavior of the program
 - Know how to add breakpoints, follow variable state during execution
Skill: Problem Decomposition

- Necessary to solve any medium/large task and we want students solving real tasks
 - Need to be able to break this into functions
- Often helpful for debugging
 - Breaking a function that is incorrect into smaller pieces helps Copilot
Skill: Identifying Useful Modules

• Knowing which module to use can help guide Copilot to better solutions.
• Conversations with Copilot Chat can make it easy to identify which module to use.

I'd like to add a watermark to my images, what's a good Python library that might help me do this?

For adding watermarks to images in Python, you can use the Pillow library (PIL). It's a fork of the Python Imaging Library (PIL) and provides a simple and easy-to-use interface for image processing tasks, including adding watermarks.
CS1-LLM Course at UCSD this fall

• Created new learning goals for the course
• Piloted the new course in Fall 2023
 • ~550 students enrolled in the course
 • Course is the first part of a 2-course CS1 sequence for students without prior programming experience
• Had large software projects in multiple domains
 • Data Science, Image Manipulation, and Games
 • Students submitted video presentations of their projects (along with code)
• Adoption of PrairieLearn for more practice and frequent assessments

• Data Collection for Research Purposes
Early Findings – Student Confidence

How confident or unconfident are you that you

...are learning how to write programs yourself, when using GenAI tools

...can recognize and understand the code Copilot generates

...can identify the types of coding problems that I should be able to complete without copilot

...can do the tasks in CSE8A without Copilot

...have a fundamental understanding of programming concepts

Early Findings – Student Perceptions of the Project

How helpful were the programming projects for your learning?

- Not at all helpful
- Not very helpful
- Neutral
- Helpful
- Extremely helpful

Thank you and questions!

Resist the use of AI coding tools:
- teaching Python fundamentals
- create AI proof assessments
- proctored exams

Embrace AI tools by integrating them:
- give personalized help to students
- focus on code reading and critique
- have students collaborate with AI

E-mail for instructor copy: leporter@ucsd.edu

bit.ly/CS1-Copilot
Discussion Questions

• What should our learning goals be for CS1?
 • And do they differ between majors and non-majors?

• What are your concerns about teaching students how to program with an LLM?

• What are you excited about with LLMs?