@TechReport{ it:2002-007,
author = {F. Edelvik and G. Ledfelt and P. L{\"o}tstedt and D. J.
Riley},
title = {An Unconditionally Stable Subcell Model for Arbitrarily
Oriented Thin Wires in the FETD Method},
institution = {Department of Information Technology, Uppsala University},
department = {Division of Scientific Computing},
year = {2002},
number = {2002-007},
month = feb,
abstract = {A computational subcell model for thin wires is developed
for electromagnetic simulations. The Maxwell equations are
discretized by a finite element approximation on a
tetrahedral grid. The wires are described by a second-order
equation for the current. The geometry of the wires can be
chosen independent of the volume grid. A symmetric coupling
between field and wires yields a stable semi-discrete
field-wire system and an unconditionally stable fully
discrete field-wire system. The system of equations is in
each time step solved by a preconditioned conjugate
gradient method. The accuracy of the subcell model is
demonstrated for dipole and loop antenna with comparisons
with the Method of Moments and experimental data. }
}