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Abstract

Parallel structured adaptive mesh refinement methods decreasesthaien
time and memory requirements of partial differential equation solversesd&
methods result in an adaptive and dynamic grid hierarchy that repeateeds
to be re-partitioned and distributed over the processors. No single parniiah
gorithm can consistently construct high-quality partitionings for all posgikte
hierarchies. Instead, the partitioning algorithm needs to be selected during
time. In this paper, an initial implementation of the Meta-Partitioner is presented
At each re-partitioning, the Meta-Partitioner autonomously selects, evafigand
invokes the partitioning algorithm predicted to result in the best performane
predict the performance of the partitioning algorithms, the Meta-Partitioses
historic performance data for grid hierarchies with properties similar tatine
rent hierarchy. The Meta-Partitioner focuses the partitioning efforthenmost
performance-inhibiting factor — either the load imbalance or the synctation
delays. The performance evaluation shows a small but noticeablerperice
increase compared to the best static algorithm. Compared to the averdge p
mance for a large number of partitioning algorithms, the Meta-Partitionesiso
tently generates partitionings with a significantly better performance.

1 Introduction

The efficiency of parallel PDE solvers that use structuregptide mesh refinement
(SAMR) is often degraded by low quality partitionings. Theewf SAMR result in
dynamic and adaptive grid hierarchies that can have vadftigreht characteristics.
Using a single partitioning algorithm for the entire exegontis sub-optimal because
no single partitioning algorithm is suitable for all gricelharchies [15, 24].

To consistently construct good performing partitionindferent partitioning al-
gorithms must be selected and invoked during run-time wepect to the current
characteristics of the application. Furthermore, bothdgabilities and the state of



the parallel computer need to be considered. Optimallyinaked partitioner should
simultaneously minimize the impact of all partition-rediperformance-inhibiting fac-
tors like load imbalance, communication costs, synchatdion delays, and data mi-
gration. Dynamic selection of the partitioning algorithorithg run-time is challenging
— both the state of the application and the computer systdihgenerally change sub-
stantially during run-time.

For most application and computer states, the choice oftipaitg algorithm is
a trade-off between the performance-inhibiting factor].[2A small load imbalance
generally results in high communication volumes. If theld®#o decrease the com-
munication, the load imbalance is normally increased. Tosistently construct high-
quality partitionings, the partitioning effort must camiiously be focused on the most
performance-inhibiting factors.

The work presented in this paper is part of a larger researgfeqi that aims
to decrease the run-time of general SAMR applications @kegwn general paral-
lel computers [12, 13,16, 24, 26—-28]. A fundamental compbirethis project is the
Meta-Partitioner, a partitioning framework that autonarsly selects the partitioning
algorithm with respect to a determined partitioning focdor the algorithm selec-
tion, it is assumed that similar application states havelairpartitioning properties.
This assumption enables the use of stored performance alatadviously encoun-
tered applications and partitioning algorithms. Usinghistorical performance data,
the performance of a candidate partitioning algorithm campiedicted for the current
grid hierarchy.

In this paper, a performance analysis of the initial implatagon of the Meta-
Partitioner is presented. Using four real-world applizasi, the performance of the
Meta-Partitioner is compared to both the static partitigralgorithm that is predicted
to result in the best performance and the average resull fmrditioning algorithms in
the evaluation. The stability and accuracy of the algorietection process is exam-
ined by simulating the performance of a number of alteregpartitioning algorithms.

2 Background

Structured adaptive mesh refinement (SAMR) is a method foredsing the execu-
tion time and memory requirements of partial differentigliation solvers. In SAMR,
computational resources are dynamically assigned to ctatipoally demanding re-
gions [5, 6]. The execution starts with a coarse base gridcthaers the entire compu-
tational domain and has the smallest acceptable resolufiaring execution, regions
with large local solution errors are continuously identifidlew grids with higher spa-
tial and temporal resolution are overlaid in these regienapling the computation of
more accurate local solutions. This refinement processpuadscrecursively. In regions
where the solution error is sufficiently small, refined gréde removed. The resulting
data structure is a dynamic adaptive grid hierarchy. Theraht dynamics require that
the hierarchy is repeatedly re-partitioned and distrithateer the processors.

During the execution of parallel SAMR applications, infation flows both along
the same refinement level and between different refinemeatsle As grid patches
are divided among processors, boundary data are exchaegeddn the processors.



Before computations can start on higher refinement leveild,data must be supplied
from the lower levels. Furthermore, to increase the acguoacthe lower levels, the
solution data is projected down to lower refinement levelené¢, the number of
communicated grid points as well as the total size of thesenmanications are two
performance-inhibiting factors for SAMR applications.

Synchronization delays can have a much larger impact on éhflermance than
the actual communication of the grid points [15]. Proces$mquently need to syn-
chronize and exchange data. Often, one of the involved psoce is busy computing
while the others have to be idle. The time spent waiting fdadan be substantially
times longer than the time needed to actually communica&eal#ta. As seen in Ta-
ble 1, the time waiting for data can even be as long as theldoh&spent computing.
In this paper, a metric called synchronization penalty isdugs an approximation of
these synchronization delays [25]. The computation of yimelsronization penalty is
described in Section 5.2.

Application Computational  Synchronization Total

time (s) time (s) time (s)
Ramp 1381.2 808.6 3035.1
ShockTurb  2618.4 562.1 4270
ConvShock 1810.7 2262.4 17102
Spheres 1843.5 1141.2 7405

Table 1: Comparison between computational time, synchation time, and total ex-
ecution time for four example applications from the SAMRnfiework AMROC [2]
and a domain-based partitioning algorithm. Except for hputational time and the
synchronization time, the third major component of thelttae is the determination
of internal data exchanges between grids assigned to the geonessor and external
communications between grids assigned to different pemees The data origins from
sixteen processor executions on the ALC parallel computéaarence Livermore
National Laboratory [1]. All data courtesy of Ralf Deitemdi

2.1 Partitioning approaches

The parallel performance of SAMR applications is heavilpeledent on the parti-
tioning of the dynamic adaptive grid hierarchy. Optimatlye partitioning algorithm
should minimize all of the partition-related performanohbibiting factors. For the
partitioning of SAMR grid hierarchies, three main approestare identified. Most
partitioning algorithms fall into one of these categories.

For patch-based partitioner3, 9, 16, 17], the distribution decision is made inde-
pendently for each grid patch. A grid patch may be kept on d¢lallprocessor or
moved entirely to another processor. If the grid patch gdait can be split. The main
advantage of the patch-based approach is a small load indeglaoth globally and
on the individual refinement levels. Shortcomings in thiprapch are high commu-
nications cost, potentially large synchronization peesjtand an inability to exploit
available parallelism across grids at different levels.



Domain-based partitionerg, 21, 23] partition the physical domain, rather than the
grids themselves. The domain is partitioned along with edirkaid grids from all re-
finement levels. Generally, the workload of the overlaidigrare projected down to
the base grid, reducing the problem to the partitioning dhgle grid that has a het-
erogeneous workload. The advantages are elimination ef-ietel communication
and better exploitation of all available parallelism betwalifferent levels of refine-
ment. The main disadvantage is an intractable load imbaltmaeep hierarchies that
can be further amplified by even larger imbalances on theiohgal refinement levels.
Another common drawback is the occurrence of “bad cuts” testilts in increased
overhead costs [24].

Hybrid partitioners[18, 24] combine the patch-based and domain-based pattitio
ing approaches to avoid their respectively shortcomingsstMybrid partitioners use
a 2-step partitioning approach. The first step use domasetechniques to generate
meta-partitionings that are mapped to a group of procesddrs second step uses a
combination of domain and patch-based techniques to agreithie distribution of each
meta-partitioning within its processor group.

The hybrid partitioning framework Nature+Fable uses daontmised techniques to
separate the unrefined parts of the coarse base grid fronefined parts [24]. For
each separate refined area, every two levels of refinementustered into a bi-level.
In a bi-level, the highest refinement level is partitioneshgshe patch-based approach.
The resulting partitioning is then projected down in a dawtzésed fashion onto the
lower refinement level. Thus, inter-level communicatioavsided inside each bi-level,
while domain-based partitioning is never performed on ntioee two refinement levels
to control the load imbalance. The partitioning process atuxe+Fable is governed
by a large set of parameters where each parameter settifgpcagarded as a separate
partitioning algorithm.

3 Dynamic selection of partitioning algorithms

During the execution of a parallel SAMR application, theddnierarchy is adaptively
evolving to ensure that the solution error is kept suffidieamall. A partitioning al-
gorithm that constructs high-quality partitionings dgrim number of time steps might
not be competitive at a later stage [24]. Furthermore, thte sif the parallel computer
can also change during run-time as other applications &euéd concurrently — im-
posing even higher demands on the partitioning algorithimusT to consistently get
good performance throughout the complete execution ofppécation, the partition-
ing algorithm must be selected dynamically during run-time

A small initial performance characterization of hybrid{itésning algorithms orig-
inating from Nature+Fable showed that it is intractable tnomlly construct rules to
select the partitioning algorithms [14]. It was often pb#sito select a hybrid parti-
tioning algorithm that influenced a specific performancerioete. load imbalance,
but large parameter inter-dependencies made the amouhtinfje inconsistent. The
effects on other performance metrics, i.e. communicatiwhsynchronization costs,
were generally hard or even impossible to predict. Hendeeratelection methods are
needed.



To design more advanced selection methods, it is assumegdeabmetrically sim-
ilar grid hierarchies have similar partitioning propestie\ partitioning algorithm that
generates a high-quality partitioning for a certain gridrlichy probably also does so
for a geometrically similar grid hierarchy. If this is falgewill be virtually impossible
to predict and compare the performance of different candigartitioning algorithms
during run-time. If the geometrical properties of the cotigrid hierarchy is accurately
characterized, historic performance data from similad pierarchies can be used dur-
ing run-time to predict the performance of a candidate fianiing algorithm.

As a basis for the algorithm selection, comprehensive pmidace data for each
candidate partitioning algorithm are needed. Furtherpthesperformance data should
be collected from a wide range of different partitioning ditions. In a large perfor-
mance characterization, 768 hybrid partitioning algonishfrom Nature+Fable were
used to partition almost 1300 different grid hierarchieS][1The resulting perfor-
mance data and the grid hierarchies were stored in a largédat for easy access and
evaluation.

The current grid hierarchy is matched with the stored grédldrichies present in the
data base and the most similar hierarchy is recorded. Thericsl performance data
for all partitioning algorithms that have partitioned theshsimilar stored hierarchy is
extracted. Based on the extracted data, the performanbe gfirtitioning algorithms
is predicted for the current hierarchy. Because the reguéikecution time is a product
of a number of performance-inhibiting factors (e.g. loadbaance, synchronization,
communication etc.), partitioning algorithms predictegérform well for only a single
performance-inhibiting factor should generally not besidared. Instead, a partition-
ing focus is determined by using the properties of both threect application state
and the computer system. The partitioning algorithm with Itlest predicted overall
performance with respect to the partitioning focus is gelaconfigured, and invoked.

4 Implementation of the Meta-partitioner

The Meta-Partitioner is designed and implemented to allmmdf/namic selection of
the partitioning algorithm during run-time [13]. Buildingn the ideas presented in
the previous section, the Meta-Partitioner autonomouslgcss, configures, and in-
vokes the partitioning algorithm that is predicted to resuthe best performance.The
implementation is made flexible and expandable by the useraponent-based soft-
ware engineering (CBSE). Also, CBSE simplifies the incoation of existing SAMR
frameworks into the Meta-Partitioner. The implementatidrthe Meta-Partitioner is
performed using the Common Component Architecture (CCanfwork [7]. As a
community based CBSE initiative, CCA is specifically aimédhe needs of parallel
scientific high-performance computing. The core of CCA iseagyal, low-latency
model for component inter-operability and interaction.

In CCA, a component is the basic unit of software functidgallogether, compo-
nents form an application. The components interact trodggtract interfaces called
ports that provide access to the functionality of a compan&eomponent can provide
a port, meaning that it implements the functionality defibgdhe port. A component
can also use ports, by performing function calls throughptbkt to access the func-



tionality provided by another component. A framework masggnd assembles the
components and ports into applications. The frameworkde atsponsible for the
execution of the application.

Recently, the CCA community has given significant attentiorcomputational
quality of service (CQoS) [19,20]. The definition of CQoS he tability of a sys-
tem to ensure that a scientific problem is solved with the aesilable hardware and
software resources. This definition coincides with the gé#the Meta-Partitioner.

4.1 Software components

The functionality of the Meta-Partitioner is divided intmamber of software compo-
nents. All components are designed to function indepehdfom any SAMR frame-
works as well as any data structures that store the gridrsteyaThe components and
their connections are showed in Figure 1.

Meta-Partitioner

! 1
Communication
and translation

AppState Select f-
L Init J

Figure 1: A conceptual Meta-Partitioner and its componefite components on the
right are adapted from third-party software.

Core

The Cor e-component is the main component in the Meta-Partitionet.edch re-
partitioning, theCor e coordinates the execution of all other components. Though
an implementation does not explicitly requir€ar e-component, it simplifies future
expansions and modifications by providing a more homogenauaerface between
the components. In practice, tiar e-component performs a number of sequential



function calls and handles all data transfers between thpoaents. The functionality
of the Cor e-component together with the components that are resgenfsibeach
task is listed in Algorithm 1.

Algorithm 1 The functionality of the Core-component
CollectStaticData (Init)
ReceiveGridHierarchy (CoT)
CharaterizeHierarchy (AppState)
SelectPartitioningFocus (Select)
MatchGridHierarchies (Select)
SelectAlgorithm (Select)
PartitionGridHierarchy (Partitioners)
ReturnGridHierarchy (CoT)

Init

Thel ni t -component contains a number of utility functions that ezeduboth before
the start of the execution and during each re-partitionteg,s.g. accessing both the
characteristic data for the stored grid hierarchies andlgparithm selection rules. The
functionality included in thé ni t -component could generally be performed by other
components. However, to keep the components as small armpdesas possible, a
number of these utility-type tasks has been moved td thi¢ -component.

4.1.1 Communication and translation — CoT

The CoT-component functions as an interface between the MetéiBaer and any
attached SAMR frameworks. At each re-partitioning, the ponent receives the un-
partitioned grid hierarchy from the SAMR framework. Aftearfitioning, theCoT-
component returns the partitioned grid hierarchy to the k&émework. The com-
ponent also translates the grid hierarchy to and from thernial grid representation
used in the Meta-Partitioner.

Application state — AppState

The AppSt at e-component characterizes the geometrical propertieseofjtid hier-
archy. A number of metrics are computed from the currentlgedarchy (see Table 2).
All metrics are normalized to a common interval using Idgistormalization. In lo-
gistic normalization, a metric is first normalized usingcore normalizatiofll]. A
valuev of a metricA is normalized ta, ., by

v— A
TA

Vzero =

whereA ando 4 are the mean and standard deviation of metric A. The z-sauTeal-
ization is useful when the minimum and maximum values of Angnown, making



it easier to add new data. Also, z-score normalization is $esisitive to outliers than
many other normalization methods [11]. However, z-scomrenadization often results

in similar values when many values are clustered around #gilo increase the rela-
tive difference for the metrics, logistic normalizatiorused [22]. The final normalized
value is

1
1 ~+ e Vzero :

After the logistic normalization, each metric is restritte the interval0, 1] and
the relative difference between values close to the mean((i5) has been increased.

Vlogistic =

| Metric | Description \
Level s Number of refinement levels
Area Fraction of refined area compared to the base grid
Ar eaLower Fraction of refined area compared to the next lower level
Pat chSi ze Average size of the grid patches compared to the arep

of the refinement level

Pat chNum Number of patches per area unit on the base grid
Aspect Rati o | Average aspect ratio
St dDevSi ze Standard deviation of the metric PatchSize

Table 2: The geometrical metrics computed by Apg St at e-component to charac-
terize the grid hierarchy.

Select

The Sel ect -component matches the geometrical properties of the mugréd hier-
archy with the stored characteristics for the grid hiereash For the matching, the
weighted least squares method is used. Because the mbaicharacterize the prop-
erties of the grid hierarchies probably differ in importaneach metric is assigned a
weight. The weights are determined experimentally fromosin2200 different weight
combinations. For each combination, the Meta-Partitigedects partitioning algo-
rithms for all grid hierarchies stored in the performancéadzase. Because the ex-
periments only involve algorithms and hierarchies alrepsent in the data base,
the average performance of each weight combination can teendieed without the
need to actually partition the grid hierarchies. The wegtbination that on average
results in the best performance is computed and added to ¢tee-Rbrtitioner.

Before the partitioning algorithm is selected, a partitignfocus is determined.
The purpose of the focus is to concentrate the partitionffarteto the area where
it is most useful. In the presented implementation, the $dsuconstant during run-
time and it only involves the two performance-inhibitingtiars that generally have
the largest impact on the execution time — load imbalancesgndhronization (see
Table 1 and Section 2). For each focus=ecusLBandFocus Synch —a maximum
allowed performance deviation from the best stored perdoce data is set. As an
example, foFFocusLB1_2, aload imbalance thatis 20 percent higher than the smallest



recorded imbalance for the most similar stored grid hidnais allowed. The amount
of allowed performance deviation is determined by an amabfthe performance data
distributions.

The focus concentrates the partitioning effort to the mestqgmance-inhibiting
factor, but the impact of the secondary factor should alsedresidered. Initially,
all partitioning algorithms that historically performedelvwith respect to the most
performance-inhibiting factor (i.e. equal to or bettenthle allowed performance de-
viation) are recorded. The historic performance of theselickate algorithms is eval-
uated again and ordered with respect to the secondary pexrfme-inhibiting factor.
Using this strategy, an algorithm that performed well fag thost similar stored grid
hierarchy and the most performance inhibiting factor walldelected, while the impact
of the second factor is kept as low as possible. Pseudo-codesf algorithm selection
is listed in Algorithm 2.

The selected partitioning algorithm is uniquely deterrditiy the combination of
the most similar stored grid hierarchy and the current fiamniihg focus. Because the
partitioning focus is divided into a number of discrete lsyat is possible to pre-
compute the algorithm selection for each combination ofifognd stored grid hierar-
chy. For each partitioning focus, the selected algorithnd the corresponding grid
hierarchies are stored as rules. Thus, during run-timealterithm selection is re-
duced to a simple table look-up for the rule that correspondse current partitioning
focus.

| Focus | Corresponding rule \
FocusSynch®5 | Allowed synch 125% of minSynch
FocusSynchI’5 | Allowed synch 175% of minSynch

FocusLB12 Allowed LB 120% of minLB
FocusLB15 Allowed LB 150% of minLB

Table 3: A number of sample partitioning focuses. Note tHéedinces between
FocusSynch andFocusLB. This is due to larger variations in the performance data
for the synchronization penalty compared to the load imizda OnlyFocusLB1 2
andFocusSynch1_25 are used in this paper.

Part

One or more partitioning components, containing eithenglsipartitioning algorithm
or a complete partitioning framework, are connected toGhee-component. The
hybrid partitioning framework Nature+Fable (see Sectidr) & the only partitioner in
the presented implementation of the Meta-Partitioner.



Algorithm 2 Selection of partitioning algorithm
Using FocusSynciX }
1 SELECT partAlg AS candidates=ROM mostSimilarAppStat®VHERE synch
< X*MIN ,;(synch)
2 SELECT partAlg FROM candidate®WVHERE LB = MIN ,,4(LB)

Using FocusLEX}

1 SELECT partAlg AS candidate~ROM mostSimilarAppStat&VHERE LB <
X*MIN ,;(LB)

2 SELECT partAlg FROM candidateSWHERE synch =MIN .,,,4(synch)

Please note the differences in th#N -clauses. For step MIN corresponds to
the minimum for all partitioning algorithms. For step@JN corresponds to the
minimum for the algorithms selected during step 1. In thipgra X=1.25 for

FocusSynch and X=1.2 forFocusLB.

5 Experimental setup

In the performance evaluation, four real-world applicasi@re used (see Section 5.1).
For each application, the performance of the Meta-Pantitias compared to both the
best static hybrid algorithm from Nature+Fable and the ayerperformance for all
algorithms used in the evaluation.

The best static partitioning algorithm for each of the foppléecations was deter-
mined using the 768 hybrid partitioning algorithms in thefpenance data base. The
average load imbalance and the average synchronizatiaitpevere computed for
each of the partitioning algorithms (see Section 5.2 for scdption of the metrics).
After the performance data for the current application heehtexcluded, the best static
partitioning algorithm was selected with the same criténat were used to construct
the rules (see Section 4.1.1). Note that the best staticitigois dependent on the
current partitioning focus — a change in the partitioningu® generally results in the
selection of another algorithm.

Theoretical performance results for the stability and eacy of the matching pro-
cess is also presented. To consistently select high-gyadititioning algorithms, an
accurate matching of the current and the stored grid hieiesds paramount. Often,
the differences in the least square sum between the modasignid hierarchies are
small. Hence, a slight change in one of the seven metricshzabcterize the geomet-
rical properties of the grid hierarchy would almost cettairesult in the selection of
a different partitioning algorithm. While most of the paditing algorithms that cor-
respond to these similar states can be expected to perfolimsame could result in
a performance that is substantially better or worse thase¢hected partitioning algo-
rithm. Thus, to draw valid conclusions about the perforneaoicthe Meta-Partitioner,
the stability and accuracy of the matching process need &véleiated. For these ex-
periments, the theoretically derived performance of thepttitioning algorithms that
correspond to the ten most similar grid hierarchies is priese
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5.1 Applications

For the evaluation, four real-world applications from thietal Test Facility (VTF) is
used. The VTF, developed at the California Institute of Texdbgy, is a software en-
vironment for coupling solvers for compressible compuwitagi fluid dynamics (CFD)
with solvers for computational solid dynamics (CSD) [10. Z&he purpose of the VTF
is to simulate highly coupled fluid-structure interactiamllems. The used applica-
tions are restricted to the CFD domain of VTF, as the CSD sadvienplemented with
unstructured grids and the finite element method.

Rampsimulates the reflection of a planar Mach 10 shock wave sgiki30 degree
wedge. A complicated shock reflection occurs when the shanlevhits the sloping
wall. The initial grid size is 480x120 grid points and the Bggttion uses three levels
of refinement with refinement facto{®,2,4}. ShockTurlireats the interaction of two
contacting gases with different densities that are sulifeet shock wave. When hit
by the shock wave, a Richtmyer-Meshkov instability is ceelatThe initial grid size is
240x120 grid points and and the application uses threed@fekfinement with a con-
stant refinement factor of two. The resulting grid hierarghthe most simple among
the applicationsConvShoclsimulates a Richtmyer-Meshkov instability in a spherical
setting. The gaseous interface is spherical and sinuswiddiape. The interface is
disturbed by a Mach 5 spherical and converging shock wave. iffitial grid size is
200x200 grid points and the application uses four levelgfiiement with refinement
factors{2,2,4,2. The ConvShock application has the most complex grid hiasaof
the applications. In th&pherespplication, a constant Mach 10 flow passes over two
spheres placed inside the computational domain. The flawitsda steady bow shocks
over the spheres. The initial grid size is 200x160 grid poamd the application uses
three levels of refinement with a constant refinement fadttwao.

5.2 Methodology

Application execution trace files and simulations of thedggerColella SAMR algo-
rithm [5] are used for the performance evaluation. A trace didmpletely describes
the un-partitioned SAMR grid hierarchy for each time step.obtain the trace files,
real applications were executed using the SAMR frameworkREMC on the ALC
parallel computer at Lawrence Livermore National Labanatoourtesy to Ralf Deit-
erding) [1, 30].

The partitioning results were obtained as follows. An untipaned grid hierar-
chy, originating from a trace file, is sent to the Meta-Pantier. Once the grid hi-
erarchy is received, the Meta-Partitioner functions dyaas if it is connected to a
real-world SAMR framework. The Meta-Partitioner charaiztes the current grid hi-
erarchy, matches it with the stored grid hierarchies in th& dase, and selects the
partitioning algorithm that is predicted to result in thesbperformance with respect
to the current partitioning focus (see Section 4.1.1). Qualtitioning algorithms from
the framework Nature+Fable are currently considered. Nbgtselected partitioning
algorithm is invoked and the grid hierarchy is partitionethe partitioned grid hi-
erarchy is returned to the component that represents theFSfk&nework. Finally,
the partitioned grid hierarchy is stored on disk and a new Qigrarchy is sent to the
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Meta-Partitioner. The weights used during the least-sgjostching were always de-
termined without the inclusion of performance data fromc¢heent application. For
all experiments, the grid hierarchies were partitionedl#®processors.

To evaluate the performance, the partitioned grid hiegaishused as input to an
SAMR simulator [8]. Rather than simulating a parallel congputhe simulator mim-
ics the execution of the common Berger-Colella SAMR algponit{5]. For each re-
partitioning, the simulator computes metrics like theharietical load imbalance, com-
munication costs, and the synchronization penalty. Thepeted performance metrics
(see below) are independent of any computer charactetistic

For the accuracy and stability experiments, it is infe&s#dl each re-partitioning
to invoke and evaluate the result from ten different pamitng algorithms. Instead,
a slightly modified version of the Meta-Partitioner is enydd. The modified ver-
sion does not invoke the partitioning framework. At eaclpagtitioning, the modified
version determines the ten most similar grid hierarchiesstores the partitioning al-
gorithms that would have been selected for these hieraciNete that the data base
already contains performance data for the candidate ipaitiy algorithms and the
grid hierarchies. Thus, the would-be performance for eachbination of application,
time step, and partitioning algorithm can be extracted ftbenperformance data base.

Results for the two most performance-inhibiting factors ead imbalance and
synchronization — are presented. The arithmetical loacglanire is defined as:

Max{processor workloagd

100.
Average workload

Load imbalance (%)= 100

When computing the load imbalance, the workload of the mostloaded processor
is used.

The synchronization penalty is computed as follows [25]c €éach level, the pro-
cessor checks their neighbors for the need to wait for anhemt If a processor
needs to wait, the penalty is approximated by the numberpypidts that have to be
updated by other processors before the stalled processeesame its computations.
The severity of the penalty is affected by how much work tladlest processor has left
on higher refinement levels — stalling a processor with atgre@ount of work left
is more serious than holding up a processor with little rexngi work. Hence, the
penalty is multiplied by the processor’s remaining work.

6 Results

For the Meta-Partitioner to be meaningful, it is essenhiat it consistently selects par-
titioning algorithms with an equal to or better performatiwn both the best static par-
titioning algorithm and the average performance for altipaning algorithms. During
the analysis, more emphasis is given to the most performiauhdgiting factor. Thus,
if FocusSynch is used, the synchronization penalty will take precedenes the
load imbalance and vice versa. All results have been nozedhvith respect to the
best static partitioning algorithm because this algorithithgenerally result in better
performance than a random algorithm. Note that it is imfadsgo compute the best
static algorithm without access to performance data.
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Figure 2: Results for the Meta-Partitioner and the partitig focusFocusLB. The
Meta-Partitioner consistently generates partitioningth v smaller load imbalance
than the average imbalance.

FocusLB

For FocusLB, the Meta-Partitioner consistently selected partitigritgorithms that
resulted in a significantly smaller load imbalance than terage imbalance for all
partitioning algorithms (see Figure 2). The improvementsr the average load imbal-
ance ranged from 10.9% to 15.5%. Compared to the best statitigning algorithm,
the load imbalance was decreased by 7.8% for the Ramp ajiticd he three other
applications resulted in approximately equal load imbedsrfor the Meta-Partitioner
and the best static algorithm.

For three of the four applications, the synchronizationgitgrwas similar to both
the best static partitioning algorithm and the averagelfqeaatitioning algorithms. For
the exception, ShockTurb, the Meta-Partitioner resulted 13.1% smaller synchro-
nization penalty than the best static algorithm. Thus, $ooythe partitioning effort on
the load imbalance did not negatively affect the synchmtion penalty.
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Figure 3: Results for the Meta-Partitioner and partitigniiocus FocusSynch.
The Meta-Partitioner consistently generates partitigaiwith smaller synchronization
penalties than the average penalty.

FocusSynch

For FocusSynch, the synchronization penalties resulting from the Meteiffaner
were always smaller than the average penalty for all algmst ranging from 1.7%
to 10.8% (see Figure 3). Comparing the results to the beit sigorithm, the Meta-
Partitioner resulted in a 11.5% decrease in the synchrtioizgenalty for the Ramp
applications while the penalty was increased by 6% for treckhurb application. The
changes in the synchronization penalties for the ConvShadkSpheres applications
were insignificant.

For all four applications, the load imbalance was reduceti wh average 5.4%
compared to the average imbalance for all algorithms. TheaNrartitioner also pro-
duced a smaller load imbalance than the best static algoritin three of the four
algorithms, while a 5% increase was recorded for the Ramlicatipn.
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Figure 4: Results for the accuracy and stability analysis1Morresponds to initial
implementation and MP10 corresponds to the partitioniggréthms for the ten most
similar grid hierarchies. Note the decrease in load imlmdaor FocusLB and the
smaller synchronization penalty feocusSynch.

Stability and accuracy of the matching

For the most performance-inhibiting factor and both paring focuses, the aver-
age performance of the partitioning algorithms that cqroesl to the ten most similar
states is consistently worse than the performance of traitign that is actually se-
lected by the Meta-Partitioner (see Figure 4). The load larii®e was on average
increased by 6.7% foFocusLB and the synchronization penalty was increased by
4.4% forFocus Synch. These results were expected since the ten matched grid hier
archies grow increasingly more different from the currend gierarchy. However, the
best performing partitioning algorithm among these ted fierarchies generally had
a significantly better performance than the algorithm detbby the Meta-Partitioner.
For FocusLB, the decrease in load imbalance ranged from 8.1% for thekShidc
application to 27.9% for the ConvShock application. Therease in the synchroniza-
tion penalty forFocus Synch ranged from 13.6% for the ShockTurb to 23.5% for the
ConvShock. The decrease seems proportional to the corypteidihe grid hierarchy
for both partitioning focuses.

For the secondary performance-inhibiting factor, the gesnin performance is
insignificant, especially when compared to the improvesamthe most performance-
inhibiting factor.
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Result summary

For both partitioning focuses, the Meta-Partitioner reslilin consistent and signif-
icant improvements for the most performance-inhibitingtda compared to the av-
erage result for all partitioning algorithms. Comparedte best static partitioning
algorithms, the improvements were smaller but generailyrgiticeable. Also, the
Meta-Partitioner did not negatively affect the results ttee secondary performance-
inhibiting factor.

Based on both the practical experiments and the theorstighility and accuracy
evaluation, the assumption that similar grid hierarchigehsimilar partitioning prop-
erties is valid. For the most performance-inhibiting factbe Meta-Partitioner always
selects partitioning algorithms with better performangant the average of all algo-
rithms. The performance is also generally equal to or bétem the best static parti-
tioning algorithm. The theoretical evaluation resulteciglightly worse performance
when more differing grid hierarchies are used to select therithm. The evaluation
also showed that the matching of grid hierarchies is sersit- at least one of the
algorithms that correspond to the ten most similar hielieschyenerally results in a
significantly better performance than the algorithm thaicsially invoked.

The theoretically derived analysis of the stability andusacy of the matching
process showed that large performance gains are possibldtiple partitioning algo-
rithms are invoked and evaluated during run-time. While Medatitioner can easily
be modified to select and invoke multiple algorithms, it isrently intractable to eval-
uate the resulting partitionings during run-time due to ldrg execution time of the
SAMR simulator.

7 Conclusions and Further work

In this paper, an initial implementation of the Meta-Patier for SAMR grid hier-
archies was presented. At each re-partitioning, the Matétidner autonomously se-
lects, configures, and invokes the partitioning algorithat ts predicted to result in the
best performance. The implementation uses componentisasvare engineering
and it is not restricted to any specific SAMR framework. Todicethe performance of
the candidate partitioning algorithms, the Meta-Panigiouses historic performance
data for grid hierarchies that are similar to the currentdrighy. The partitioning ef-
fort is focused on the performance-inhibiting factors witle largest impact on the
execution time — either the load imbalance or the synchedidm delays.

The performance evaluation of the Meta-Partitioner showsnall but noticeable
performance increase compared to the best static algorfhmMeta-Partitioner con-
sistently generates partitionings with a significantlyteperformance compared to
the average performance for a large number of partitioniggrahms. The selected
partitioning algorithms did not result in a degraded perfance for the secondary
performance-inhibiting factor. The performance evalwatind an accuracy and stabil-
ity analysis of the algorithm selection showed that singlad hierarchies have similar
partitioning properties. Finally, the performance of thet&tPartitioner can be greatly
improved if multiple algorithms are invoked and evaluatedach re-partitioning.
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To use the Meta-Partitioner in real-world applicationsjesal tasks remain. No
SAMR framework have yet been interfaced to the Meta-Paniti. While the per-
formance evaluation showed that the Meta-Partitioner avgs the performance of
the most performance-inhibiting factor, real-world expents should be performed
to determine the impact on the execution time. These expgatsmmight result in ad-
justments to the selection rules. The partitioning focusugently constant during
run-time. A focus that is changing in conjunction with thetjiening needs of the
application and the state of the computer is desirable.

The initial implementation of the Meta-Partitioner haswhd its ability to consis-
tently reduce the impact of the most performance-inhigifecctor. Future versions of
the Meta-Partitioner will certainly result in even largeductions.
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