
Run-time selection of partitioning algorithms for
parallel SAMR applications

Henrik Johansson
Dept. of Information Technology, Scientific Computing

Uppsala University
Box 337, SE-751 05 Uppsala, Sweden

E-mail: henrik.johansson@it.uu.se

Abstract

Parallel structured adaptive mesh refinement methods decrease the execution
time and memory requirements of partial differential equation solvers. These
methods result in an adaptive and dynamic grid hierarchy that repeatedly needs
to be re-partitioned and distributed over the processors. No single partitioning al-
gorithm can consistently construct high-quality partitionings for all possiblegrid
hierarchies. Instead, the partitioning algorithm needs to be selected duringrun-
time. In this paper, an initial implementation of the Meta-Partitioner is presented.
At each re-partitioning, the Meta-Partitioner autonomously selects, configures, and
invokes the partitioning algorithm predicted to result in the best performance. To
predict the performance of the partitioning algorithms, the Meta-Partitioneruses
historic performance data for grid hierarchies with properties similar to thecur-
rent hierarchy. The Meta-Partitioner focuses the partitioning effort onthe most
performance-inhibiting factor — either the load imbalance or the synchronization
delays. The performance evaluation shows a small but noticeable performance
increase compared to the best static algorithm. Compared to the average perfor-
mance for a large number of partitioning algorithms, the Meta-Partitioner consis-
tently generates partitionings with a significantly better performance.

1 Introduction

The efficiency of parallel PDE solvers that use structured adaptive mesh refinement
(SAMR) is often degraded by low quality partitionings. The use of SAMR result in
dynamic and adaptive grid hierarchies that can have vastly different characteristics.
Using a single partitioning algorithm for the entire execution is sub-optimal because
no single partitioning algorithm is suitable for all grid hierarchies [15, 24].

To consistently construct good performing partitionings,different partitioning al-
gorithms must be selected and invoked during run-time with respect to the current
characteristics of the application. Furthermore, both thecapabilities and the state of
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the parallel computer need to be considered. Optimally, theinvoked partitioner should
simultaneously minimize the impact of all partition-related performance-inhibiting fac-
tors like load imbalance, communication costs, synchronization delays, and data mi-
gration. Dynamic selection of the partitioning algorithm during run-time is challenging
— both the state of the application and the computer system will generally change sub-
stantially during run-time.

For most application and computer states, the choice of partitioning algorithm is
a trade-off between the performance-inhibiting factors [24]. A small load imbalance
generally results in high communication volumes. If the goal is to decrease the com-
munication, the load imbalance is normally increased. To consistently construct high-
quality partitionings, the partitioning effort must continuously be focused on the most
performance-inhibiting factors.

The work presented in this paper is part of a larger research project that aims
to decrease the run-time of general SAMR applications executing on general paral-
lel computers [12, 13, 16, 24, 26–28]. A fundamental component in this project is the
Meta-Partitioner, a partitioning framework that autonomously selects the partitioning
algorithm with respect to a determined partitioning focus.For the algorithm selec-
tion, it is assumed that similar application states have similar partitioning properties.
This assumption enables the use of stored performance data for previously encoun-
tered applications and partitioning algorithms. Using thehistorical performance data,
the performance of a candidate partitioning algorithm can be predicted for the current
grid hierarchy.

In this paper, a performance analysis of the initial implementation of the Meta-
Partitioner is presented. Using four real-world applications, the performance of the
Meta-Partitioner is compared to both the static partitioning algorithm that is predicted
to result in the best performance and the average result for all partitioning algorithms in
the evaluation. The stability and accuracy of the algorithmselection process is exam-
ined by simulating the performance of a number of alternative partitioning algorithms.

2 Background

Structured adaptive mesh refinement (SAMR) is a method for decreasing the execu-
tion time and memory requirements of partial differential equation solvers. In SAMR,
computational resources are dynamically assigned to computationally demanding re-
gions [5, 6]. The execution starts with a coarse base grid that covers the entire compu-
tational domain and has the smallest acceptable resolution. During execution, regions
with large local solution errors are continuously identified. New grids with higher spa-
tial and temporal resolution are overlaid in these regions,enabling the computation of
more accurate local solutions. This refinement process proceeds recursively. In regions
where the solution error is sufficiently small, refined gridsare removed. The resulting
data structure is a dynamic adaptive grid hierarchy. The inherent dynamics require that
the hierarchy is repeatedly re-partitioned and distributed over the processors.

During the execution of parallel SAMR applications, information flows both along
the same refinement level and between different refinement levels. As grid patches
are divided among processors, boundary data are exchanged between the processors.
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Before computations can start on higher refinement levels, grid data must be supplied
from the lower levels. Furthermore, to increase the accuracy on the lower levels, the
solution data is projected down to lower refinement levels. Hence, the number of
communicated grid points as well as the total size of these communications are two
performance-inhibiting factors for SAMR applications.

Synchronization delays can have a much larger impact on the performance than
the actual communication of the grid points [15]. Processors frequently need to syn-
chronize and exchange data. Often, one of the involved processors is busy computing
while the others have to be idle. The time spent waiting for data can be substantially
times longer than the time needed to actually communicate the data. As seen in Ta-
ble 1, the time waiting for data can even be as long as the actual time spent computing.
In this paper, a metric called synchronization penalty is used as an approximation of
these synchronization delays [25]. The computation of the synchronization penalty is
described in Section 5.2.

Application Computational
time (s)

Synchronization
time (s)

Total
time (s)

Ramp 1381.2 808.6 3035.1
ShockTurb 2618.4 562.1 4270
ConvShock 1810.7 2262.4 17102
Spheres 1843.5 1141.2 7405

Table 1: Comparison between computational time, synchronization time, and total ex-
ecution time for four example applications from the SAMR framework AMROC [2]
and a domain-based partitioning algorithm. Except for the computational time and the
synchronization time, the third major component of the total time is the determination
of internal data exchanges between grids assigned to the same processor and external
communications between grids assigned to different processors. The data origins from
sixteen processor executions on the ALC parallel computer at Lawrence Livermore
National Laboratory [1]. All data courtesy of Ralf Deiterding.

2.1 Partitioning approaches

The parallel performance of SAMR applications is heavily dependent on the parti-
tioning of the dynamic adaptive grid hierarchy. Optimally,the partitioning algorithm
should minimize all of the partition-related performance-inhibiting factors. For the
partitioning of SAMR grid hierarchies, three main approaches are identified. Most
partitioning algorithms fall into one of these categories.

For patch-based partitioners[3, 9, 16, 17], the distribution decision is made inde-
pendently for each grid patch. A grid patch may be kept on the local processor or
moved entirely to another processor. If the grid patch is large, it can be split. The main
advantage of the patch-based approach is a small load imbalance, both globally and
on the individual refinement levels. Shortcomings in this approach are high commu-
nications cost, potentially large synchronization penalties, and an inability to exploit
available parallelism across grids at different levels.
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Domain-based partitioners[4, 21, 23] partition the physical domain, rather than the
grids themselves. The domain is partitioned along with all overlaid grids from all re-
finement levels. Generally, the workload of the overlaid grids are projected down to
the base grid, reducing the problem to the partitioning of a single grid that has a het-
erogeneous workload. The advantages are elimination of inter-level communication
and better exploitation of all available parallelism between different levels of refine-
ment. The main disadvantage is an intractable load imbalance for deep hierarchies that
can be further amplified by even larger imbalances on the individual refinement levels.
Another common drawback is the occurrence of “bad cuts” thatresults in increased
overhead costs [24].

Hybrid partitioners[18, 24] combine the patch-based and domain-based partition-
ing approaches to avoid their respectively shortcomings. Most hybrid partitioners use
a 2-step partitioning approach. The first step use domain-based techniques to generate
meta-partitionings that are mapped to a group of processors. The second step uses a
combination of domain and patch-based techniques to optimize the distribution of each
meta-partitioning within its processor group.

The hybrid partitioning framework Nature+Fable uses domain-based techniques to
separate the unrefined parts of the coarse base grid from the refined parts [24]. For
each separate refined area, every two levels of refinement areclustered into a bi-level.
In a bi-level, the highest refinement level is partitioned using the patch-based approach.
The resulting partitioning is then projected down in a domain-based fashion onto the
lower refinement level. Thus, inter-level communication isavoided inside each bi-level,
while domain-based partitioning is never performed on morethan two refinement levels
to control the load imbalance. The partitioning process in Nature+Fable is governed
by a large set of parameters where each parameter setting canbe regarded as a separate
partitioning algorithm.

3 Dynamic selection of partitioning algorithms

During the execution of a parallel SAMR application, the grid hierarchy is adaptively
evolving to ensure that the solution error is kept sufficiently small. A partitioning al-
gorithm that constructs high-quality partitionings during a number of time steps might
not be competitive at a later stage [24]. Furthermore, the state of the parallel computer
can also change during run-time as other applications are executed concurrently — im-
posing even higher demands on the partitioning algorithm. Thus, to consistently get
good performance throughout the complete execution of the application, the partition-
ing algorithm must be selected dynamically during run-time.

A small initial performance characterization of hybrid partitioning algorithms orig-
inating from Nature+Fable showed that it is intractable to manually construct rules to
select the partitioning algorithms [14]. It was often possible to select a hybrid parti-
tioning algorithm that influenced a specific performance metric, i.e. load imbalance,
but large parameter inter-dependencies made the amount of change inconsistent. The
effects on other performance metrics, i.e. communication and synchronization costs,
were generally hard or even impossible to predict. Hence, other selection methods are
needed.
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To design more advanced selection methods, it is assumed that geometrically sim-
ilar grid hierarchies have similar partitioning properties. A partitioning algorithm that
generates a high-quality partitioning for a certain grid hierarchy probably also does so
for a geometrically similar grid hierarchy. If this is false, it will be virtually impossible
to predict and compare the performance of different candidate partitioning algorithms
during run-time. If the geometrical properties of the current grid hierarchy is accurately
characterized, historic performance data from similar grid hierarchies can be used dur-
ing run-time to predict the performance of a candidate partitioning algorithm.

As a basis for the algorithm selection, comprehensive performance data for each
candidate partitioning algorithm are needed. Furthermore, the performance data should
be collected from a wide range of different partitioning conditions. In a large perfor-
mance characterization, 768 hybrid partitioning algorithms from Nature+Fable were
used to partition almost 1300 different grid hierarchies [15]. The resulting perfor-
mance data and the grid hierarchies were stored in a large data base for easy access and
evaluation.

The current grid hierarchy is matched with the stored grid hierarchies present in the
data base and the most similar hierarchy is recorded. The historical performance data
for all partitioning algorithms that have partitioned the most similar stored hierarchy is
extracted. Based on the extracted data, the performance of the partitioning algorithms
is predicted for the current hierarchy. Because the resulting execution time is a product
of a number of performance-inhibiting factors (e.g. load imbalance, synchronization,
communication etc.), partitioning algorithms predicted to perform well for only a single
performance-inhibiting factor should generally not be considered. Instead, a partition-
ing focus is determined by using the properties of both the current application state
and the computer system. The partitioning algorithm with the best predicted overall
performance with respect to the partitioning focus is selected, configured, and invoked.

4 Implementation of the Meta-partitioner

The Meta-Partitioner is designed and implemented to allow for dynamic selection of
the partitioning algorithm during run-time [13]. Buildingon the ideas presented in
the previous section, the Meta-Partitioner autonomously selects, configures, and in-
vokes the partitioning algorithm that is predicted to result in the best performance.The
implementation is made flexible and expandable by the use of component-based soft-
ware engineering (CBSE). Also, CBSE simplifies the incorporation of existing SAMR
frameworks into the Meta-Partitioner. The implementationof the Meta-Partitioner is
performed using the Common Component Architecture (CCA) framework [7]. As a
community based CBSE initiative, CCA is specifically aimed at the needs of parallel
scientific high-performance computing. The core of CCA is a general, low-latency
model for component inter-operability and interaction.

In CCA, a component is the basic unit of software functionality. Together, compo-
nents form an application. The components interact trough abstract interfaces called
ports that provide access to the functionality of a component. A component can provide
a port, meaning that it implements the functionality definedby the port. A component
can also use ports, by performing function calls through theport to access the func-
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tionality provided by another component. A framework manages and assembles the
components and ports into applications. The framework is also responsible for the
execution of the application.

Recently, the CCA community has given significant attentionto computational
quality of service (CQoS) [19, 20]. The definition of CQoS is the ability of a sys-
tem to ensure that a scientific problem is solved with the bestavailable hardware and
software resources. This definition coincides with the goalof the Meta-Partitioner.

4.1 Software components

The functionality of the Meta-Partitioner is divided into anumber of software compo-
nents. All components are designed to function independently from any SAMR frame-
works as well as any data structures that store the grid hierarchy. The components and
their connections are showed in Figure 1.

Figure 1: A conceptual Meta-Partitioner and its components. The components on the
right are adapted from third-party software.

Core

The Core-component is the main component in the Meta-Partitioner. At each re-
partitioning, theCore coordinates the execution of all other components. Though
an implementation does not explicitly require aCore-component, it simplifies future
expansions and modifications by providing a more homogeneous interface between
the components. In practice, theCore-component performs a number of sequential
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function calls and handles all data transfers between the components. The functionality
of the Core-component together with the components that are responsible for each
task is listed in Algorithm 1.

Algorithm 1 The functionality of the Core-component
CollectStaticData (Init)
ReceiveGridHierarchy (CoT)
CharaterizeHierarchy (AppState)
SelectPartitioningFocus (Select)
MatchGridHierarchies (Select)
SelectAlgorithm (Select)
PartitionGridHierarchy (Partitioners)
ReturnGridHierarchy (CoT)

Init

TheInit-component contains a number of utility functions that are used both before
the start of the execution and during each re-partitioning step, e.g. accessing both the
characteristic data for the stored grid hierarchies and thealgorithm selection rules. The
functionality included in theInit-component could generally be performed by other
components. However, to keep the components as small and simple as possible, a
number of these utility-type tasks has been moved to theInit-component.

4.1.1 Communication and translation — CoT

TheCoT-component functions as an interface between the Meta-Partitioner and any
attached SAMR frameworks. At each re-partitioning, the component receives the un-
partitioned grid hierarchy from the SAMR framework. After partitioning, theCoT-
component returns the partitioned grid hierarchy to the SAMR framework. The com-
ponent also translates the grid hierarchy to and from the internal grid representation
used in the Meta-Partitioner.

Application state — AppState

TheAppState-component characterizes the geometrical properties of the grid hier-
archy. A number of metrics are computed from the current gridhierarchy (see Table 2).
All metrics are normalized to a common interval using logistic normalization. In lo-
gistic normalization, a metric is first normalized usingz-score normalization[11]. A
valuev of a metricA is normalized tovzero by

vzero =
v − Ã

σA

whereÃ andσA are the mean and standard deviation of metric A. The z-score normal-
ization is useful when the minimum and maximum values of A is unknown, making
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it easier to add new data. Also, z-score normalization is less sensitive to outliers than
many other normalization methods [11]. However, z-score normalization often results
in similar values when many values are clustered around the mean. To increase the rela-
tive difference for the metrics, logistic normalization isused [22]. The final normalized
value is

vlogistic =
1

1 + e−vzero

.

After the logistic normalization, each metric is restricted to the interval[0, 1] and
the relative difference between values close to the mean (i.e. 0.5) has been increased.

Metric Description
Levels Number of refinement levels
Area Fraction of refined area compared to the base grid
AreaLower Fraction of refined area compared to the next lower level
PatchSize Average size of the grid patches compared to the area

of the refinement level
PatchNum Number of patches per area unit on the base grid
AspectRatio Average aspect ratio
StdDevSize Standard deviation of the metric PatchSize

Table 2: The geometrical metrics computed by theAppState-component to charac-
terize the grid hierarchy.

Select

TheSelect-component matches the geometrical properties of the current grid hier-
archy with the stored characteristics for the grid hierarchies. For the matching, the
weighted least squares method is used. Because the metrics that characterize the prop-
erties of the grid hierarchies probably differ in importance, each metric is assigned a
weight. The weights are determined experimentally from almost 2200 different weight
combinations. For each combination, the Meta-Partitionerselects partitioning algo-
rithms for all grid hierarchies stored in the performance data base. Because the ex-
periments only involve algorithms and hierarchies alreadypresent in the data base,
the average performance of each weight combination can be determined without the
need to actually partition the grid hierarchies. The weightcombination that on average
results in the best performance is computed and added to the Meta-Partitioner.

Before the partitioning algorithm is selected, a partitioning focus is determined.
The purpose of the focus is to concentrate the partitioning effort to the area where
it is most useful. In the presented implementation, the focus is constant during run-
time and it only involves the two performance-inhibiting factors that generally have
the largest impact on the execution time — load imbalance andsynchronization (see
Table 1 and Section 2). For each focus —FocusLB andFocusSynch— a maximum
allowed performance deviation from the best stored performance data is set. As an
example, forFocusLB1 2, a load imbalance that is 20 percent higher than the smallest
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recorded imbalance for the most similar stored grid hierarchy is allowed. The amount
of allowed performance deviation is determined by an analysis of the performance data
distributions.

The focus concentrates the partitioning effort to the most performance-inhibiting
factor, but the impact of the secondary factor should also beconsidered. Initially,
all partitioning algorithms that historically performed well with respect to the most
performance-inhibiting factor (i.e. equal to or better than the allowed performance de-
viation) are recorded. The historic performance of these candidate algorithms is eval-
uated again and ordered with respect to the secondary performance-inhibiting factor.
Using this strategy, an algorithm that performed well for the most similar stored grid
hierarchy and the most performance inhibiting factor will be selected, while the impact
of the second factor is kept as low as possible. Pseudo-code for the algorithm selection
is listed in Algorithm 2.

The selected partitioning algorithm is uniquely determined by the combination of
the most similar stored grid hierarchy and the current partitioning focus. Because the
partitioning focus is divided into a number of discrete levels, it is possible to pre-
compute the algorithm selection for each combination of focus and stored grid hierar-
chy. For each partitioning focus, the selected algorithms and the corresponding grid
hierarchies are stored as rules. Thus, during run-time, thealgorithm selection is re-
duced to a simple table look-up for the rule that correspondsto the current partitioning
focus.

Focus Corresponding rule
FocusSynch125 Allowed synch 125% of minSynch
FocusSynch175 Allowed synch 175% of minSynch

FocusLB12 Allowed LB 120% of minLB
FocusLB15 Allowed LB 150% of minLB

Table 3: A number of sample partitioning focuses. Note the differences between
FocusSynch andFocusLB. This is due to larger variations in the performance data
for the synchronization penalty compared to the load imbalance. OnlyFocusLB1 2
andFocusSynch1 25 are used in this paper.

Part

One or more partitioning components, containing either a single partitioning algorithm
or a complete partitioning framework, are connected to theCore-component. The
hybrid partitioning framework Nature+Fable (see Section 2.1) is the only partitioner in
the presented implementation of the Meta-Partitioner.
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Algorithm 2 Selection of partitioning algorithm

Using FocusSynch{X}
1 SELECT partAlg AS candidatesFROM mostSimilarAppStateWHERE synch
< X* MIN all(synch)
2 SELECT partAlgFROM candidatesWHERE LB = MIN cand(LB)

Using FocusLB{X}
1 SELECT partAlg AS candidatesFROM mostSimilarAppStateWHERE LB <

X* MIN all(LB)
2 SELECT partAlgFROM candidatesWHERE synch =MIN cand(synch)

Please note the differences in theMIN -clauses. For step 1,MIN corresponds to
the minimum for all partitioning algorithms. For step 2,MIN corresponds to the
minimum for the algorithms selected during step 1. In this paper, X=1.25 for
FocusSynch and X=1.2 forFocusLB.

5 Experimental setup

In the performance evaluation, four real-world applications are used (see Section 5.1).
For each application, the performance of the Meta-Partitioner is compared to both the
best static hybrid algorithm from Nature+Fable and the average performance for all
algorithms used in the evaluation.

The best static partitioning algorithm for each of the four applications was deter-
mined using the 768 hybrid partitioning algorithms in the performance data base. The
average load imbalance and the average synchronization penalty were computed for
each of the partitioning algorithms (see Section 5.2 for a description of the metrics).
After the performance data for the current application had been excluded, the best static
partitioning algorithm was selected with the same criteriathat were used to construct
the rules (see Section 4.1.1). Note that the best static algorithm is dependent on the
current partitioning focus — a change in the partitioning focus generally results in the
selection of another algorithm.

Theoretical performance results for the stability and accuracy of the matching pro-
cess is also presented. To consistently select high-quality partitioning algorithms, an
accurate matching of the current and the stored grid hierarchies is paramount. Often,
the differences in the least square sum between the most similar grid hierarchies are
small. Hence, a slight change in one of the seven metrics thatcharacterize the geomet-
rical properties of the grid hierarchy would almost certainly result in the selection of
a different partitioning algorithm. While most of the partitioning algorithms that cor-
respond to these similar states can be expected to perform well, some could result in
a performance that is substantially better or worse than theselected partitioning algo-
rithm. Thus, to draw valid conclusions about the performance of the Meta-Partitioner,
the stability and accuracy of the matching process need to beevaluated. For these ex-
periments, the theoretically derived performance of the ten partitioning algorithms that
correspond to the ten most similar grid hierarchies is presented.
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5.1 Applications

For the evaluation, four real-world applications from the Virtual Test Facility (VTF) is
used. The VTF, developed at the California Institute of Technology, is a software en-
vironment for coupling solvers for compressible computational fluid dynamics (CFD)
with solvers for computational solid dynamics (CSD) [10, 29]. The purpose of the VTF
is to simulate highly coupled fluid-structure interaction problems. The used applica-
tions are restricted to the CFD domain of VTF, as the CSD solver is implemented with
unstructured grids and the finite element method.

Rampsimulates the reflection of a planar Mach 10 shock wave striking a 30 degree
wedge. A complicated shock reflection occurs when the shock wave hits the sloping
wall. The initial grid size is 480x120 grid points and the application uses three levels
of refinement with refinement factors{2,2,4}. ShockTurbtreats the interaction of two
contacting gases with different densities that are subjectto a shock wave. When hit
by the shock wave, a Richtmyer-Meshkov instability is created. The initial grid size is
240x120 grid points and and the application uses three levels of refinement with a con-
stant refinement factor of two. The resulting grid hierarchyis the most simple among
the applications.ConvShocksimulates a Richtmyer-Meshkov instability in a spherical
setting. The gaseous interface is spherical and sinusoidalin shape. The interface is
disturbed by a Mach 5 spherical and converging shock wave. The initial grid size is
200x200 grid points and the application uses four levels of refinement with refinement
factors{2,2,4,2}. The ConvShock application has the most complex grid hierarchy of
the applications. In theSpheresapplication, a constant Mach 10 flow passes over two
spheres placed inside the computational domain. The flow results in steady bow shocks
over the spheres. The initial grid size is 200x160 grid points and the application uses
three levels of refinement with a constant refinement factor of two.

5.2 Methodology

Application execution trace files and simulations of the Berger-Colella SAMR algo-
rithm [5] are used for the performance evaluation. A trace file completely describes
the un-partitioned SAMR grid hierarchy for each time step. To obtain the trace files,
real applications were executed using the SAMR framework AMROC on the ALC
parallel computer at Lawrence Livermore National Laboratory (courtesy to Ralf Deit-
erding) [1, 30].

The partitioning results were obtained as follows. An un-partitioned grid hierar-
chy, originating from a trace file, is sent to the Meta-Partitioner. Once the grid hi-
erarchy is received, the Meta-Partitioner functions exactly as if it is connected to a
real-world SAMR framework. The Meta-Partitioner characterizes the current grid hi-
erarchy, matches it with the stored grid hierarchies in the data base, and selects the
partitioning algorithm that is predicted to result in the best performance with respect
to the current partitioning focus (see Section 4.1.1). Onlypartitioning algorithms from
the framework Nature+Fable are currently considered. Next, the selected partitioning
algorithm is invoked and the grid hierarchy is partitioned.The partitioned grid hi-
erarchy is returned to the component that represents the SAMR framework. Finally,
the partitioned grid hierarchy is stored on disk and a new grid hierarchy is sent to the
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Meta-Partitioner. The weights used during the least-square matching were always de-
termined without the inclusion of performance data from thecurrent application. For
all experiments, the grid hierarchies were partitioned for16 processors.

To evaluate the performance, the partitioned grid hierarchy is used as input to an
SAMR simulator [8]. Rather than simulating a parallel computer, the simulator mim-
ics the execution of the common Berger-Colella SAMR algorithm [5]. For each re-
partitioning, the simulator computes metrics like the arithmetical load imbalance, com-
munication costs, and the synchronization penalty. The computed performance metrics
(see below) are independent of any computer characteristics.

For the accuracy and stability experiments, it is infeasible at each re-partitioning
to invoke and evaluate the result from ten different partitioning algorithms. Instead,
a slightly modified version of the Meta-Partitioner is employed. The modified ver-
sion does not invoke the partitioning framework. At each re-partitioning, the modified
version determines the ten most similar grid hierarchies and stores the partitioning al-
gorithms that would have been selected for these hierarchies. Note that the data base
already contains performance data for the candidate partitioning algorithms and the
grid hierarchies. Thus, the would-be performance for each combination of application,
time step, and partitioning algorithm can be extracted fromthe performance data base.

Results for the two most performance-inhibiting factors — load imbalance and
synchronization — are presented. The arithmetical load imbalance is defined as:

Load imbalance (%)= 100 ∗
Max{processor workload}

Average workload
− 100.

When computing the load imbalance, the workload of the most overloaded processor
is used.

The synchronization penalty is computed as follows [25]. For each level, the pro-
cessor checks their neighbors for the need to wait for any of them. If a processor
needs to wait, the penalty is approximated by the number gridpoints that have to be
updated by other processors before the stalled processor can resume its computations.
The severity of the penalty is affected by how much work the stalled processor has left
on higher refinement levels — stalling a processor with a great amount of work left
is more serious than holding up a processor with little remaining work. Hence, the
penalty is multiplied by the processor’s remaining work.

6 Results

For the Meta-Partitioner to be meaningful, it is essential that it consistently selects par-
titioning algorithms with an equal to or better performancethan both the best static par-
titioning algorithm and the average performance for all partitioning algorithms. During
the analysis, more emphasis is given to the most performance-inhibiting factor. Thus,
if FocusSynch is used, the synchronization penalty will take precedence over the
load imbalance and vice versa. All results have been normalized with respect to the
best static partitioning algorithm because this algorithmwill generally result in better
performance than a random algorithm. Note that it is impossible to compute the best
static algorithm without access to performance data.
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Figure 2: Results for the Meta-Partitioner and the partitioning focusFocusLB. The
Meta-Partitioner consistently generates partitionings with a smaller load imbalance
than the average imbalance.

FocusLB

For FocusLB, the Meta-Partitioner consistently selected partitioning algorithms that
resulted in a significantly smaller load imbalance than the average imbalance for all
partitioning algorithms (see Figure 2). The improvements over the average load imbal-
ance ranged from 10.9% to 15.5%. Compared to the best static partitioning algorithm,
the load imbalance was decreased by 7.8% for the Ramp application. The three other
applications resulted in approximately equal load imbalances for the Meta-Partitioner
and the best static algorithm.

For three of the four applications, the synchronization penalty was similar to both
the best static partitioning algorithm and the average for all partitioning algorithms. For
the exception, ShockTurb, the Meta-Partitioner resulted in a 13.1% smaller synchro-
nization penalty than the best static algorithm. Thus, focusing the partitioning effort on
the load imbalance did not negatively affect the synchronization penalty.
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(b) Synchronization

Figure 3: Results for the Meta-Partitioner and partitioning focus FocusSynch.
The Meta-Partitioner consistently generates partitionings with smaller synchronization
penalties than the average penalty.

FocusSynch

For FocusSynch, the synchronization penalties resulting from the Meta-Partitioner
were always smaller than the average penalty for all algorithms, ranging from 1.7%
to 10.8% (see Figure 3). Comparing the results to the best static algorithm, the Meta-
Partitioner resulted in a 11.5% decrease in the synchronization penalty for the Ramp
applications while the penalty was increased by 6% for the ShockTurb application. The
changes in the synchronization penalties for the ConvShockand Spheres applications
were insignificant.

For all four applications, the load imbalance was reduced with on average 5.4%
compared to the average imbalance for all algorithms. The Meta-Partitioner also pro-
duced a smaller load imbalance than the best static algorithm for three of the four
algorithms, while a 5% increase was recorded for the Ramp application.
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(b) Synchronization
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(c) Load imbalance
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(d) Synchronization

Figure 4: Results for the accuracy and stability analysis. MP1 corresponds to initial
implementation and MP10 corresponds to the partitioning algorithms for the ten most
similar grid hierarchies. Note the decrease in load imbalance forFocusLB and the
smaller synchronization penalty forFocusSynch.

Stability and accuracy of the matching

For the most performance-inhibiting factor and both partitioning focuses, the aver-
age performance of the partitioning algorithms that correspond to the ten most similar
states is consistently worse than the performance of the algorithm that is actually se-
lected by the Meta-Partitioner (see Figure 4). The load imbalance was on average
increased by 6.7% forFocusLB and the synchronization penalty was increased by
4.4% forFocusSynch. These results were expected since the ten matched grid hier-
archies grow increasingly more different from the current grid hierarchy. However, the
best performing partitioning algorithm among these ten grid hierarchies generally had
a significantly better performance than the algorithm selected by the Meta-Partitioner.
For FocusLB, the decrease in load imbalance ranged from 8.1% for the ShockTurb
application to 27.9% for the ConvShock application. The decrease in the synchroniza-
tion penalty forFocusSynch ranged from 13.6% for the ShockTurb to 23.5% for the
ConvShock. The decrease seems proportional to the complexity of the grid hierarchy
for both partitioning focuses.

For the secondary performance-inhibiting factor, the changes in performance is
insignificant, especially when compared to the improvements in the most performance-
inhibiting factor.
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Result summary

For both partitioning focuses, the Meta-Partitioner resulted in consistent and signif-
icant improvements for the most performance-inhibiting factor compared to the av-
erage result for all partitioning algorithms. Compared to the best static partitioning
algorithms, the improvements were smaller but generally still noticeable. Also, the
Meta-Partitioner did not negatively affect the results forthe secondary performance-
inhibiting factor.

Based on both the practical experiments and the theoreticalstability and accuracy
evaluation, the assumption that similar grid hierarchies have similar partitioning prop-
erties is valid. For the most performance-inhibiting factor, the Meta-Partitioner always
selects partitioning algorithms with better performance than the average of all algo-
rithms. The performance is also generally equal to or betterthen the best static parti-
tioning algorithm. The theoretical evaluation resulted ina slightly worse performance
when more differing grid hierarchies are used to select the algorithm. The evaluation
also showed that the matching of grid hierarchies is sensitive — at least one of the
algorithms that correspond to the ten most similar hierarchies generally results in a
significantly better performance than the algorithm that isactually invoked.

The theoretically derived analysis of the stability and accuracy of the matching
process showed that large performance gains are possible ifmultiple partitioning algo-
rithms are invoked and evaluated during run-time. While Meta-Partitioner can easily
be modified to select and invoke multiple algorithms, it is currently intractable to eval-
uate the resulting partitionings during run-time due to thelong execution time of the
SAMR simulator.

7 Conclusions and Further work

In this paper, an initial implementation of the Meta-Partitioner for SAMR grid hier-
archies was presented. At each re-partitioning, the Meta-Partitioner autonomously se-
lects, configures, and invokes the partitioning algorithm that is predicted to result in the
best performance. The implementation uses component-based software engineering
and it is not restricted to any specific SAMR framework. To predict the performance of
the candidate partitioning algorithms, the Meta-Partitioner uses historic performance
data for grid hierarchies that are similar to the current hierarchy. The partitioning ef-
fort is focused on the performance-inhibiting factors withthe largest impact on the
execution time — either the load imbalance or the synchronization delays.

The performance evaluation of the Meta-Partitioner shows asmall but noticeable
performance increase compared to the best static algorithm. The Meta-Partitioner con-
sistently generates partitionings with a significantly better performance compared to
the average performance for a large number of partitioning algorithms. The selected
partitioning algorithms did not result in a degraded performance for the secondary
performance-inhibiting factor. The performance evaluation and an accuracy and stabil-
ity analysis of the algorithm selection showed that similargrid hierarchies have similar
partitioning properties. Finally, the performance of the Meta-Partitioner can be greatly
improved if multiple algorithms are invoked and evaluated at each re-partitioning.
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To use the Meta-Partitioner in real-world applications, several tasks remain. No
SAMR framework have yet been interfaced to the Meta-Partitioner. While the per-
formance evaluation showed that the Meta-Partitioner improves the performance of
the most performance-inhibiting factor, real-world experiments should be performed
to determine the impact on the execution time. These experiments might result in ad-
justments to the selection rules. The partitioning focus iscurrently constant during
run-time. A focus that is changing in conjunction with the partitioning needs of the
application and the state of the computer is desirable.

The initial implementation of the Meta-Partitioner has showed its ability to consis-
tently reduce the impact of the most performance-inhibiting factor. Future versions of
the Meta-Partitioner will certainly result in even larger reductions.
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