168 1995 Sverker Holmgren and Kurt Otto sverker@tdb.uu.se A framework for polynomial preconditioners based on fast transforms II: PDE applications Abstract The solution of systems of equations arising from systems of time-dependent partial differential equations (PDEs) is considered. Primarily, first-order PDEs are studied, but second-order derivatives are also accounted for. The discretization is performed using a general finite difference stencil in space and an implicit method in time. The systems of equations are solved by a preconditioned Krylov subspace method. The preconditioners exploit optimal and superoptimal approximations by polynomials in a normal basis matrix, associated with a fast trigonometric transform. Numerical experiments for high-order accurate discretizations are presented. The results show that preconditioners based on fast transforms yield efficient solution algorithms, even for large quotients between the time and space steps. Utilizing a spatial grid ratio less than one, the arithmetic work per grid point is bounded by a constant as the number of grid points increases.